High-Dimensional, Penalized-Regression Models in Time-to-Event Clinical Trials

Author(s):  
Federico Rotolo ◽  
Nils Ternès ◽  
Stefan Michiels
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Leili Tapak ◽  
Michael R. Kosorok ◽  
Majid Sadeghifar ◽  
Omid Hamidi ◽  
Saeid Afshar ◽  
...  

Variable selection and penalized regression models in high-dimension settings have become an increasingly important topic in many disciplines. For instance, omics data are generated in biomedical researches that may be associated with survival of patients and suggest insights into disease dynamics to identify patients with worse prognosis and to improve the therapy. Analysis of high-dimensional time-to-event data in the presence of competing risks requires special modeling techniques. So far, some attempts have been made to variable selection in low- and high-dimension competing risk setting using partial likelihood-based procedures. In this paper, a weighted likelihood-based penalized approach is extended for direct variable selection under the subdistribution hazards model for high-dimensional competing risk data. The proposed method which considers a larger class of semiparametric regression models for the subdistribution allows for taking into account time-varying effects and is of particular importance, because the proportional hazards assumption may not be valid in general, especially in the high-dimension setting. Also, this model relaxes from the constraint of the ability to simultaneously model multiple cumulative incidence functions using the Fine and Gray approach. The performance/effectiveness of several penalties including minimax concave penalty (MCP); adaptive LASSO and smoothly clipped absolute deviation (SCAD) as well as their L2 counterparts were investigated through simulation studies in terms of sensitivity/specificity. The results revealed that sensitivity of all penalties were comparable, but the MCP and MCP-L2 penalties outperformed the other methods in term of selecting less noninformative variables. The practical use of the model was investigated through the analysis of genomic competing risk data obtained from patients with bladder cancer and six genes of CDC20, NCF2, SMARCAD1, RTN4, ETFDH, and SON were identified using all the methods and were significantly correlated with the subdistribution.


2019 ◽  
Author(s):  
Josh Colston ◽  
Pablo Peñataro Yori ◽  
Lawrence H. Moulton ◽  
Maribel Paredes Olortegui ◽  
Peter S. Kosek ◽  
...  

2021 ◽  
Vol 9 (4) ◽  
pp. e002231
Author(s):  
Romain Banchereau ◽  
Avantika S. Chitre ◽  
Alexis Scherl ◽  
Thomas D. Wu ◽  
Namrata S. Patil ◽  
...  

BackgroundCD8+ tissue-resident memory T (TRM) cells, marked by CD103 (ITGAE) expression, are thought to actively suppress cancer progression, leading to the hypothesis that their presence in tumors may predict response to immunotherapy.MethodsHere, we test this by combining high-dimensional single-cell modalities with bulk tumor transcriptomics from 1868 patients enrolled in lung and bladder cancer clinical trials of atezolizumab (anti-programmed cell death ligand 1 (PD-L1)).ResultsITGAE was identified as the most significantly upregulated gene in inflamed tumors. Tumor CD103+ CD8+ TRM cells exhibited a complex phenotype defined by the expression of checkpoint regulators, cytotoxic proteins, and increased clonal expansion.ConclusionsOur analyses indeed demonstrate that the presence of CD103+ CD8+ TRM cells, quantified by tracking intratumoral CD103 expression, can predict treatment outcome, suggesting that patients who respond to PD-1/PD-L1 blockade are those who exhibit an ongoing antitumor T-cell response.


2020 ◽  
Author(s):  
Erich J. Greene ◽  
Peter Peduzzi ◽  
James Dziura ◽  
Can Meng ◽  
Michael E. Miller ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Yeuntyng Lai ◽  
Morihiro Hayashida ◽  
Tatsuya Akutsu

Because every disease has its unique survival pattern, it is necessary to find a suitable model to simulate followups. DNA microarray is a useful technique to detect thousands of gene expressions at one time and is usually employed to classify different types of cancer. We propose combination methods of penalized regression models and nonnegative matrix factorization (NMF) for predicting survival. We triedL1- (lasso),L2- (ridge), andL1-L2combined (elastic net) penalized regression for diffuse large B-cell lymphoma (DLBCL) patients' microarray data and found thatL1-L2combined method predicts survival best with the smallest logrankPvalue. Furthermore, 80% of selected genes have been reported to correlate with carcinogenesis or lymphoma. Through NMF we found that DLBCL patients can be divided into 4 groups clearly, and it implies that DLBCL may have 4 subtypes which have a little different survival patterns. Next we excluded some patients who were indicated hard to classify in NMF and executed three penalized regression models again. We found that the performance of survival prediction has been improved with lower logrankPvalues. Therefore, we conclude that after preselection of patients by NMF, penalized regression models can predict DLBCL patients' survival successfully.


Sign in / Sign up

Export Citation Format

Share Document