The Effect of Suction on the Stability of Fluid between Horizontal Plates at Differing Temperatures
The linear stability theory is applied to study the effect of suction on the stability criteria of a horizontal fluid layer confined between two thin porous surfaces heated from below. This investigation covers a wide range of Reynolds number 0 ≥ Re ≥ 30, and Prandtl number 0.72 ≥ Pr ≥ 100. The results show that the critical Rayleigh number increases with Peclet number, and is independent of Pr as far as Re < 3. However, for Re > 3 the critical Rayleigh number is function of both Pr and Pe. In addition, the analysis is extended to study the effect of suction on the stability of two special superimposed fluid layers. The results in the latter case indicate a more stabilizing effect. Furthermore, the effect of thermal boundary conditions is also investigated.