scholarly journals Type synthesis of 6-DOF mobile parallel link mechanisms based on screw theory

2022 ◽  
Vol 16 (1) ◽  
pp. JAMDSM0005-JAMDSM0005
Author(s):  
Siying LONG ◽  
Tatsuro TERAKAWA ◽  
Masaharu KOMORI
2020 ◽  
Vol 33 (1) ◽  
Author(s):  
Yongquan Li ◽  
Yang Zhang ◽  
Lijie Zhang

Abstract The current type synthesis of the redundant actuated parallel mechanisms is adding active-actuated kinematic branches on the basis of the traditional parallel mechanisms, or using screw theory to perform multiple getting intersection and union to complete type synthesis. The number of redundant parallel mechanisms obtained by these two methods is limited. In this paper, based on Grassmann line geometry and Atlas method, a novel and effective method for type synthesis of redundant actuated parallel mechanisms (PMs) with closed-loop units is proposed. Firstly, the degree of freedom (DOF) and constraint line graph of the moving platform are determined successively, and redundant lines are added in constraint line graph to obtain the redundant constraint line graph and their equivalent line graph, and a branch constraint allocation scheme is formulated based on the allocation criteria. Secondly, a scheme is selected and redundant lines are added in the branch chains DOF graph to construct the redundant actuated branch chains with closed-loop units. Finally, the branch chains that meet the requirements of branch chains configuration criteria and F&C (degree of freedom & constraint) line graph are assembled. In this paper, two types of 2 rotational and 1 translational (2R1T) redundant actuated parallel mechanisms and one type of 2 translational and 1 rotational (2T1R) redundant actuated parallel mechanisms with few branches and closed-loop units were taken as examples, and 238, 92 and 15 new configurations were synthesized. All the mechanisms contain closed-loop units, and the mechanisms and the actuators both have good symmetry. Therefore, all the mechanisms have excellent comprehensive performance, in which the two rotational DOFs of the moving platform of 2R1T redundant actuated parallel mechanism can be independently controlled. The instantaneous analysis shows that all mechanisms are not instantaneous, which proves the feasibility and practicability of the method.


Author(s):  
Hai-Jun Su ◽  
Denis V. Dorozhkin ◽  
Judy M. Vance

This paper presents a screw theory based approach for the type synthesis of compliant mechanisms with flexures. We provide a systematic formulation of the constraint-based approach which has been mainly developed by precision engineering experts in designing precision machines. The two fundamental concepts in the constraint-based approach, constraint and freedom, can be represented mathematically by a wrench and a twist in screw theory. For example, an ideal wire flexure applies a translational constraint which can be described a wrench of pure force. As a result, the design rules of the constraint-based approach can be systematically formulated in the format of screws and screw systems. Two major problems in compliant mechanism design, constraint pattern analysis and constraint pattern design are discussed with examples in details. This innovative method paves the way for introducing computational techniques into the constraint-based approach for the synthesis and analysis of compliant mechanisms.


Author(s):  
Ting-Li Yang ◽  
An-Xin Liu ◽  
Qiong Jin ◽  
Yu-Feng Luo ◽  
Lu-Bin Hang ◽  
...  

Based on previous research results presented by authors, this paper proposes a novel systematic approach for structure synthesis of all parallel mechanisms (excluding Bennett mechanism etc), which is totally different from the approaches based on screw theory and based on displacement subgroup. Main characteristics of this approach are: (a) the synthesized mechanisms are non-instantaneous ones, and (b) only simple mathematical tools (vector algebra, theory of sets, etc.) are used. Main steps of this approach include: (1) Determining functional and structural requirements of the parallel mechanism to be synthesized, such as position and orientation characteristic (POC) matrix, degree of freedom (DOF), etc. (2) Type synthesis of branches. (3) Assembling of branches (determining the geometry constraint conditions among the branches attached between the moving platform and the frame, and checking the DOF). (4) Identifying the inactive joints. (5) Selecting the actuating joints. In order to illustrate the whole procedure, the type synthesis of spherical parallel mechanisms is studied using this approach.


2004 ◽  
Vol 126 (1) ◽  
pp. 101-108 ◽  
Author(s):  
Xianwen Kong ◽  
Cle´ment M. Gosselin

A spherical parallel manipulator (SPM) refers to a 3-DOF (degree-of-freedom) parallel manipulator generating 3-DOF spherical motion. A method is proposed for the type synthesis of SPMs based on screw theory. The wrench systems of a spherical parallel kinematic chain (SPKC) and its legs are first analyzed. A general procedure is then proposed for the type synthesis of SPMs. The type synthesis of legs for SPKCs, the type synthesis of SPKCs, as well as the selection of inputs of SPMs are dealt with in sequence. An input validity condition of SPMs is proposed. SPKCs with and without inactive joints are synthesized. The number of overconstraints of each SPKC is also given. The phenomenon of dependent joint groups in an SPKC is revealed for the first time.


2018 ◽  
Vol 42 (2) ◽  
pp. 164-176 ◽  
Author(s):  
Wanqiang Xi ◽  
Bai Chen ◽  
Yaoyao Wang ◽  
Feng Ju

For the synthesis of the required type about the multi-robot coordination system in industrial transportation, this paper presents a novel method in which each robot in the coordinated task is viewed as a branched chain of an equivalent parallel robot (EPR), which is converted into a problem for type synthesis of parallel robots. A theoretic method is proposed to represent the kinematic features of the mechanism’s end-effector and its position and pose in the world coordinate system. The basic concept of a robotic characteristic (C) set is given, and the corresponding algorithm is analyzed. Based on the theory of C set, the concrete steps for type synthesis of EPR are presented by analyzing the characteristics of its branched chains, and many EPR groups with end kinematic features for the C sets of the operational tasks are obtained. Then three translational (3T) operational requirements that can be extended to other degrees of freedom (DOF) are adopted, and the DOF of homogeneous and heterogeneous EPR are analyzed using screw theory. Finally the validation of the method is demonstrated by Adams, which shows that the two groups are able to complete the task.


Author(s):  
João Victor Borges Dos Santos ◽  
Roberto Simoni ◽  
Andrea Piga Carboni ◽  
Daniel Martins

Author(s):  
Wei Ye ◽  
Yuefa Fang ◽  
Sheng Guo ◽  
Haibo Qu

In this paper, the motion equivalent chain method is proposed and then applied to the type synthesis of a class of 2R2T parallel mechanism. The equivalent serial chains are synthesized for a specific 2R2T motion pattern based on screw theory. Feasible limb structures that provide a constraint couple and a constraint force are enumerated according to the reciprocity of the twist and wrench systems. Several motion equivalent single loop chains are constructed with the equivalent serial chains. Using motion equivalent single loop chains to replace the equivalent serial chains, a class of 2R2T parallel mechanisms is obtained based on the foundation of motion equivalent single loop chain structures.


1989 ◽  
Vol 111 (2) ◽  
pp. 163-175 ◽  
Author(s):  
J. K. Davidson

A type-synthesis process, which is based on screw theory and geometry, is developed to identify certain robots, each of which can provide controllably dexterous workspace of a tool-point. The identification process is confined to only those robots which control the motion of the end-effector with seven series-connected joints, the axes for the outermost three of which are concurrent. Forty six types of robots are so identified, and, for each, the results are (i) a suitable kinematic chain for the arm and (ii) suitable angle-dimensions for the links of the arm, where the angle-choices are limited to the values 0, ± π/2, and π. A geometric description of the dominant function for control is included. The same kinematic chains are surveyed for all possible parallel and right-angle arrangements of adjacent axes in the four links of the arm. Again utilizing screw theory, 160 robots are identified which do not posses full-cycle axis-dependence among some or all of the first five axes.


2011 ◽  
Vol 308-310 ◽  
pp. 2135-2138
Author(s):  
Yong Gang Huang ◽  
Li Du ◽  
Ya Hua Chen ◽  
Jun Feng

Based on screw theory,a systematic method is proposed to synthesis symmertrical non-overconstrained 3-DOF translational parallel manipulators(TPMs).Firstly,the configuration conditions of non-overconstrained TPMs are analysis.The generation of symmertrical non-overconstrained TPMs is reduced to design the structure of serial chains with one infinite pitch wrench,and to combine the same serial chains inparallel.Finally,making sure that, the union of the wrench for the same serial chains in each combination constitutes a three infinite pitch wrench system.we get all the 3-legged symmertrical non-overconstrained TPMs.


2011 ◽  
Vol 308-310 ◽  
pp. 2025-2030 ◽  
Author(s):  
Wen Juan Lu ◽  
Li Jie Zhang ◽  
Da Xing Zeng ◽  
Ruo Song Wang

For the general parallel mechanisms(PMS), since the coupling between kinematic chains, the nonlinear relation between the input and output is presented, which have led to difficulty in the trajectory planning and precision control. Design of motion decoupled parallel mechanisms(DPMS) has become a good new topic in this area and has captured researcher's attention. In this work, the approach to a synthesis of three degree-of-freedom(3-DOF) DPMS is considered based on screw theory and motion synthesis ideas. Criterions for type synthesis of the branches for DPMS is established according to the twist screw system of the limbs, which assures the decoupling in each limb. Then a six-step procedure is presented for the type synthesis of 2T1R decoupled mechanisms.


Sign in / Sign up

Export Citation Format

Share Document