scholarly journals Effects of Fiber Volume Fraction on Creep Compliance of Carbon Fiber Reinforced Thermoplastic Polyimide: #AURUM.

1995 ◽  
Vol 61 (589) ◽  
pp. 1951-1956 ◽  
Author(s):  
Noriyuki Iwamoto ◽  
Satoshi Somiya
2015 ◽  
Vol 813 ◽  
pp. 315-322
Author(s):  
Yan Li ◽  
Meng Ma

The effects of fiber orientation and volume fraction on electrical conductivity of unidirectional carbon fiber reinforced polymer (CFRP) were investigated. The unidirectional CFRP shows strong anisotropy in electrical properties. Composites with higher fiber volume fraction possess higher electrical conductivity, since the fibers are the only current path in the composites. Additionally, carbon nanotubes (CNTs) were mixed into the resin by high-pressure microfluidizer to improve the electrical properties of the composites. Results show that the electrical conductivity of the polymer matrix has been dramatically improved. The conductivity of CNTs modified CFRP composites is improved along fiber direction, while it remains at the same level in the transverse to fiber direction.


2015 ◽  
Vol 30 (5) ◽  
pp. 724-737 ◽  
Author(s):  
Bing Liu ◽  
Anchang Xu ◽  
Limin Bao

In the present article, a highly heat-resistant composite with a high fiber volume fraction ( Vf > 60%) was successfully manufactured using engineering plastic Nylon66 as matrix and carbon fabric as reinforcement by a solution impregnation molding method. The mechanical properties of the composite were investigated using a tensile measuring device. Mechanical analysis revealed the superior mechanical properties of the composite relative to those of previously reported carbon fiber-reinforced thermoplastics (CFRTPs). The cross section and fracture surface of the composite were characterized by scanning electron microscopy. The resin successfully impregnated the fiber bundles and the bonding strength of the fiber–resin interface was excellent. Dynamic mechanical analysis was used to evaluate the heat-resistant property of the composite. The composite exhibited a better heat-resistant property relative to that of the carbon fiber-reinforced crystalline co-polyester composite. To further verify the versatility of this method, super engineering plastic polyetherimide with a higher molecular weight was successfully employed as matrix to prepare CFRTP.


2012 ◽  
Vol 583 ◽  
pp. 150-153
Author(s):  
Qian Liu ◽  
Xiao Yuan Pei ◽  
Jia Lu Li

The modal properties of carbon fiber woven fabric (with fiber orientation of 45°/-45°) / epoxy resin composites with different fiber volume fraction were studied by using single input and single output free vibration of cantilever beam hammering modal analysis method. The effect of different fiber volume fraction on the modal parameters of laminated composites was analyzed. The experimental results show that with the fiber volume fraction increasing, the natural frequency of laminated composites becomes larger and damping ratio becomes smaller. The fiber volume fraction smaller, the peak value of natural frequency becomes lower and the attenuating degree of acceleration amplitude becomes faster.


2021 ◽  
pp. 002199832110112
Author(s):  
Qing Yang Steve Wu ◽  
Nan Zhang ◽  
Weng Heng Liew ◽  
Vincent Lim ◽  
Xiping Ni ◽  
...  

Propagation of ultrasonic wave in Carbon Fiber Reinforced Polymer (CFRP) is greatly influenced by the material’s matrix, resins and fiber volume ratio. Laser ultrasonic broadband spectral technique has been demonstrated for porosity and fiber volume ratio extraction on unidirection aligned CFRP laminates. Porosity in the matrix materials can be calculated by longitudinal wave attenuation and accurate fiber volume ratio can be derived by combined velocity through the high strength carbon fiber and the matrix material with further consideration of porosity effects. The results have been benchmarked by pulse-echo ultrasonic tests, gas pycnometer and thermal gravimetric analysis (TGA). The potentials and advantages of the laser ultrasonic technique as a non-destructive evaluation method for CFRP carbon fiber volume fraction evaluation were demonstrated.


2021 ◽  
Vol 879 ◽  
pp. 284-293
Author(s):  
Norliana Bakar ◽  
Siew Choo Chin

Fiber Reinforced Polymer (FRP) made from synthetic fiber had been widely used for strengthening of reinforced concrete (RC) structures in the past decades. Due to its high cost, detrimental to the environment and human health, natural fiber composites becoming the current alternatives towards a green and environmental friendly material. This paper presents an investigation on the mechanical properties of bamboo fiber reinforced composite (BFRC) with different types of resins. The BFRC specimens were prepared by hand lay-up method using epoxy and vinyl-ester resins. Bamboo fiber volume fractions, 30%, 35%, 40%, 45% and 50% was experimentally investigated by conducting tensile and flexural test, respectively. Results showed that the tensile and flexural strength of bamboo fiber reinforced epoxy composite (BFREC) was 63.2% greater than the bamboo fiber reinforced vinyl-ester composite (BFRVC). It was found that 45% of bamboo fiber volume fraction on BFREC exhibited the highest tensile strength compared to other BFRECs. Meanwhile, 40% bamboo fiber volume fraction of BFRVC showed the highest tensile strength between bamboo fiber volume fractions for BFRC using vinyl-ester resin. Studies showed that epoxy-based BFRC exhibited excellent results compared to the vinyl-ester-based composite. Further studies are required on using BFRC epoxy-based composite in various structural applications and strengthening purposes.


2006 ◽  
Vol 33 (6) ◽  
pp. 726-734 ◽  
Author(s):  
Fariborz Majdzadeh ◽  
Sayed Mohamad Soleimani ◽  
Nemkumar Banthia

The purpose of this study was to investigate the influence of fiber reinforcement on the shear capacity of reinforced concrete (RC) beams. Both steel and synthetic fibers at variable volume fractions were investigated. Two series of tests were performed: structural tests, where RC beams were tested to failure under an applied four-point load; and materials tests, where companion fiber-reinforced concrete (FRC) prisms were tested under direct shear to obtain material properties such as shear strength and shear toughness. FRC test results indicated an almost linear increase in the shear strength of concrete with an increase in the fiber volume fraction. Fiber reinforcement enhanced the shear load capacity and shear deformation capacity of RC beams, but 1% fiber volume fraction was seen as optimal; no benefits were noted when the fiber volume fraction was increased beyond 1%. Finally, an equation is proposed to predict the shear capacity of RC beams.Key words: shear strength, fiber-reinforced concrete, RC beam, stirrups, energy absorption capacity, steel fiber, synthetic fiber.


Sign in / Sign up

Export Citation Format

Share Document