Increasing the sustainability of composite manufacturing processes by using algorithm-based optimisation and evaluation for process chain design

2020 ◽  
Vol 4 (2/3/4) ◽  
pp. 350
Author(s):  
Florian Brillowski ◽  
Thomas Gries ◽  
Christoph Greb
2019 ◽  
Vol 809 ◽  
pp. 480-486
Author(s):  
Rohit George Sebastian ◽  
Christof Obertscheider ◽  
Ewald Fauster ◽  
Ralf Schledjewski

The growing use of composite materials has generated interest in improving and optimising composite manufacturing processes such as Liquid Composite Moulding (LCM). In LCM, dry preforms are placed in a mould and impregnated with the matrix material. The efficiency of filling the moulds can be improved by using Computational Fluid Dynamics (CFD) filling simulations during the design of the mould. As part of an on-going effort to develop a CFD tool for the simulation of LCM processes, a volume averaged energy balance equation has been derived and implemented in a custom OpenFOAM solver. The energy balance is implemented in a custom OpenFOAM solver with and without the pressure terms for comparison with results from RTM experiments. It is found that the pressure terms do not significantly influence the results for LCM processes.


Author(s):  
Anand Balu Nellippallil ◽  
Vignesh Rangaraj ◽  
B. P. Gautham ◽  
Amarendra Kumar Singh ◽  
Janet K. Allen ◽  
...  

Reducing the manufacturing and marketing time of products by means of integrated simulation-based design and development of the material, product, and the associated manufacturing processes is the need of the hour for industry. This requires the design of materials to targeted performance goals through bottom-up and top-down modeling and simulation practices that enables handshakes between modelers and designers along the entire product realization process. Manufacturing a product involves a host of unit operations and the final properties of the manufactured product depends on the processing steps carried out at each of these unit operations. In order to effectively couple the material processing-structure-property-performance spaces, there needs to be an interplay of the systems-based design of materials with enhancement of models of various unit operations through multiscale modeling methodologies and integration of these models at different length scales (vertical integration). This ensures the flow of information from one unit operation to another thereby establishing the integration of manufacturing processes (horizontal integration). Together these types of integration will support the decision-based design of the manufacturing process chain so as to realize the end product. In this paper, we present a goal-oriented, inverse decision-based design method to achieve the vertical and horizontal integration of models for the hot rolling and cooling stages of the steel manufacturing process chain for the production of a rod with defined properties. The primary mathematical construct used for the method presented is the compromise Decision Support Problem (cDSP) supported by the proposed Concept Exploration Framework (CEF) to generate satisficing solutions under uncertainty. The efficacy of the method is illustrated by exploring the design space for the microstructure after cooling that satisfies the requirements identified by the end mechanical properties of the product. The design decisions made are then communicated in an inverse manner to carry out the design exploration of the cooling stage to identify the design set points for cooling that satisfies the new target microstructure requirements identified. Specific requirements such as managing the banded microstructure to minimize distortion in forged gear blanks are considered in the problem. The proposed method is generic and we plan to extend the work by carrying out the integrated decision-based design exploration of rolling and reheating stages that precede to realize the end product.


1995 ◽  
Vol 16 (5) ◽  
pp. 370-377 ◽  
Author(s):  
J.-D. Nam ◽  
J. C. Seferis ◽  
S.-W. Kim ◽  
K.-J. Lee

Procedia CIRP ◽  
2015 ◽  
Vol 32 ◽  
pp. 64-69 ◽  
Author(s):  
Johannes Böhner ◽  
Max Weeber ◽  
Frank Kuebler ◽  
Rolf Steinhilper

2021 ◽  
Vol 111 (06) ◽  
pp. 363-367
Author(s):  
Lukas Langer ◽  
Matthias Schmitt ◽  
Georg Schlick ◽  
Johannes Schilp

Die additive Fertigung ermöglicht komplexe Geometrien und individualisierte Bauteile. Die hohen Material- und Fertigungskosten können ein Hindernis für einen wirtschaftlichen Einsatz sein. In der hybriden additiven Fertigung werden die Vorteile konventioneller sowie additiver Fertigungsverfahren kombiniert. Für eine weitere Steigerung der Wirtschaftlichkeit und Effizienz werden nichtwertschöpfende Schritte der Prozesskette identifiziert und Automatisierungsansätze entwickelt.   Additive manufacturing enables complex geometries and individualized components. However, high material and manufacturing costs can be a hindrance for economical use. Hybrid additive manufacturing combines the advantages of conventional with additive manufacturing processes. For a further increase in profitability and efficiency, non-value-adding steps in the process chain are identified and automation approaches developed.


2021 ◽  
Author(s):  
Justyna Rybicka ◽  
Teresa Purse ◽  
Brett Parlour

Cost estimation helps build confidence in the feasibility of the development of novel manufacturing processes. This paper focuses on the exploration of the cost estimation for novel manufacturing processes for decision support. One of the aspects of estimation is building credibility around the analysis, especially, in the early stages of planning. Cost estimating guidelines provide a good overview of the cost estimation steps but there is a requirement for guidelines for cost estimation model development. Through building on an understanding of the cost estimation principles, as well as cost estimation modelling, a high-level generic approach for process cost estimation is proposed. Further, a demonstration of a cost estimation modelling approach used for composites manufacturing in the automotive sector is provided, outlining the steps in cost estimation model development.


Author(s):  
Anand Balu Nellippallil ◽  
Pranav Mohan ◽  
Janet K. Allen ◽  
Farrokh Mistree

In this paper, we present robust concept exploration using a goal-oriented, inverse decision-based design method to carry out the integrated design of material, product and associated manufacturing processes by managing the uncertainty involved. The uncertainty in complex material and product systems is derived from many sources and we classify robust design based on these sources — uncertainty in noise factors (Type I robust design); uncertainty in design variables or control factors (Type II robust design); uncertainty in function relationship between control/noise and response (Type III robust design); and propagation and potential amplification of uncertainty in a process chain (Type I to III robust designs across process chains). In this paper, we introduce a variation to the existing goal-oriented inverse decision-based design method to bring in robustness for multiple conflicting goals from the stand-point of Type I to III robust design across process chains. The variation embodies the introduction of specific robust design goals and constraints anchored in the mathematical constructs of error margin indices and design capability indices to determine “satisficing robust design” specifications for given performance requirement ranges using the goal-oriented, inverse design method. The design of a hot rolling process chain for the production of a rod is used as an example.


Sign in / Sign up

Export Citation Format

Share Document