Multiple Closed Geodesics on Positively Curved Finsler Manifolds
Abstract In this paper, we prove that on every Finsler manifold {(M,F)} with reversibility λ and flag curvature K satisfying {(\frac{\lambda}{\lambda+1})^{2}<K\leq 1} , there exist {[\frac{\dim M+1}{2}]} closed geodesics. If the number of closed geodesics is finite, then there exist {[\frac{\dim M}{2}]} non-hyperbolic closed geodesics. Moreover, there are three closed geodesics on {(M,F)} satisfying the above pinching condition when {\dim M=3} .