scholarly journals Antibacterial Activities of Transition Metal complexes of Mesocyclic Amidine 1,4-diazacycloheptane (DACH)

2019 ◽  
Vol 17 (1) ◽  
pp. 936-942
Author(s):  
Sadia Rehman ◽  
Muhammad Ikram ◽  
Fazle Subhan ◽  
Mutasem Sinnokrot ◽  
Waliullah Khan

AbstractThe titled compound 1,4-diazacycloheptane have vibrational freedom which allows it to coordinate to metal through 1st and 4th positions. Copper (II) and Nickel (II) complexes of DACH were prepared and characterized through UV-Visible, FT-IR, elemental analyses, conductance, and magnetic susceptibilities and compared to the results published in Inorg. Chem., 8(3), 528 (1969). The prepared complexes bearing different coordinating or non-coordinating anions were screened against four different pathogenic bacterial strains to study anionic effect on antibacterial activity. The MIC values of all the compounds suggest that [Cu(DACH)2Br2] is almost inactive against the tested microbes except Staph aureus. Rest of the metal complexes are active at their respective MIC values.

Author(s):  
Taghreed M. Musa ◽  
Mahmoud Najim A.Al-jibouri ◽  
Bayader Fadhil Abbas

   The present paper describes the synthesis and structural studies of new transition metal complexes of cobalt(II), nickel(II), copper(II) and cadmium(II) with two bi dentate ligands derived from quinoxaline-2,3-dione. The two ligands were fully identified by elemental analyses, FT-IR, NMR and UV-Visible spectra. The metal complexes of  Co(II), Ni(II), Cu(II) and Cd(II) were isolated in the solid state after reactions of their metal chlorides with the ligands in 2:1 mole ratio. The isolated solid metal complexes were characterized with the help of elemental analyses, NMR, FT-IR and UV-Visible spectra. As well as the thermal stability of the coordinated quinoxaline polymers were tested by TG-DSC analysis and it is found that cleavage of terminal moiety was investigated, the strong coordinated bonds between oxygen donor atoms in L1 while nitrogen donor atoms of quinoxaline ring in the L2 with the metal ions. Furthermore, the thermal stability of cobalt(II), nickel(II), copper(II) and Cd(II) complexes were screened by TG-DSC analysis and the results helped us in the investigation of the proposed structure of the prepared complexes in the formula [M(L)2Cl2].XH2O and [Cd(L)2]Cl2 where L= L1 and L2  ligands derived from quinoxaline-2,3-dione.  


2019 ◽  
Vol 31 (9) ◽  
pp. 1905-1912 ◽  
Author(s):  
Kummara Srinivasulu ◽  
Katreddi Hussain Reddy ◽  
K. Anuja ◽  
D. Dhanalakshmi ◽  
Golla Ramesh

Metal complexes having the composition M(Bipy)Cl2 (where, M = Cu(II), Ni(II) and Co(II); Bipy = 2,2-bipyridyl) are reacted with 2-acetylthiophene thiosemicarbazone (ATT) to produce heteroleptic transition metal complexes with molecular formula [M(Bipy)ATT]. The complexes are characterized by mass spectra, molar conductivity, infrared and electronic spectra. Electrochemical behaviour of these metal complexes was investigated by cyclic voltammetric studies. The metal complexes show quasi reversible cyclic voltammetric responses for the Cu(II)/Cu(I) couple. The binding properties of these complexes with calf-thymus DNA have been investigated by using absorption spectrophotometry. Metal complexes are screened for their antibacterial activity by using agar well diffusion method against pathogenic bacterial strains viz. Escherichia coli and Staphylococcus aureus. Antibacterial activity of the present complexes are comparable with the activity of ciprofloxacin. The Cu(Bipy)Cl2 complex inhibits bacteria more strongly than any other complex. The Ni(Bipy)ATT complex shows more activity than the parent complex, Ni(Bipy)Cl2.


2020 ◽  
Vol 15 (4) ◽  
pp. 145
Author(s):  
IRMA KRESNAWATY ◽  
ACHMAD ZAINUDDIN

<p>ABSTRAK</p><p>Banyak tanaman yang dilaporkan memiliki kandungan senyawabahan aktif antioksidan dan antibakteri. Salah satu tanaman Indonesia yangmemiliki aktivitas ini adalah gambir (Uncaria gambir). Pada penelitian ini,ekstrak etanol daun gambir diubah menjadi derivat metilnya untukmembuatnya lebih larut dalam lemak dan diamati pengaruh derivatisasitersebut terhadap aktivitas antioksidan di laboratorium kimia organik danpengujian aktivitas antibakteri di laboratorium mikrobiologi UniversitasPadjadjaran. Penelitian ini dilaksanakan di laboratorium Kimia OrganikJurusan Kimia dan laboratorium Mikrobiologi Jurusan Biologi UniversitasPadjadjaran dari bulan Desember 2004 - Juli 2005. Ekstrak gambirdimetilasi  menggunakan  dimetil  sulfat  (DMS)  dan  dimurnikanmenggunakan kromatografi kolom dengan pelarut bergradien (kloroform :metanol = 99:1 ; 98:2 ; 95:5 ; 80:20 ; 70:30; dan 50:50 v/v) dan kemudianmenggunakan kloroform : metanol = 99 : 1 v/v. Aktivitas antioksidanmenunjukkan penurunan yang tampak dari peningkatan, yaitu : IC 50  13,41ppm untuk ekstrak etanol menjadi 121,81 ppm untuk hasil metilasi.Aktivitas antibakteri juga menunjukkan penurunan setelah dimetilasikarena adanya penurunan diameter hambat pertumbuhan bakteri. Duaisolat (isolat 1 dan 2) yang diperoleh dari hasil pemurnian dikarakterisasimenggunakan spektrofotometer UV-Visible dan FT-IR. Hasil yangdiperoleh mengindikasikan adanya senyawa fenolik yang ditunjukkan olehregang –OH pada 3445 dan 3448 cm -1 dan regang CH aromatik pada 3010dan 3030 cm -1 . Isolat 1 memiliki aktivitas antioksidan dan antibakteri yanglebih tinggi dibandingkan isolat 2.</p><p>Kata kunci : Uncaria gambir, derivat metil, antibakteri dan aktivitasantioksidan</p><p>ABSTRACT</p><p>The antioxidant and antibacterial activities of ethanolextract of gambir leaves (Uncaria gambir)</p><p>There are many plants in Indonesia reported to contain antioxidantand antibacterial substances. One of them having these activities is gambir(Uncaria gambir). In this research, ethanol extract of gambir leaves waschanged into its methyl derivate in order to make it more soluble in fats.The effect of the derivatization on antioxidant activity was observed atorganic chemistry laboratory and antibacterial activity was observed atmicrobiology laboratory of the Padjadjaran University. This research wascarried out in December 2004 to July 2005. Gambir extract wasmethylized using dimethylsulphate (DMS) and then purified usingcoloumn chromatography with gradient solvents (chloroform : methanol =99:1; 98:2; 50:50; 80:20; 70:30; and 50:50 v/v), and then with chloroform :methanol = 99:1 v/v. The antioxidant activity showed a decrease indicatedby an increase of IC 50 from 13.41 ppm for ethanolic extract to become121.81 ppm for the methylated compounds. The antibacterial activity alsoshowed a decrease after methylization due to the decrease of inhibitiondiameter of bacteria growth. Two isolates (isolate 1 and 2) obtained fromthe  purification  steps  were  characterized  using  UV-Visiblespectrophotometer and FT-IR. The results indicated the existence ofphenolic compunds showed by -OH stretching in 3,445 and 3,448 cm -1 ;and CH aromatic stretching in 3,010 and 3,030 cm -1 . Isolate 1 was higherin antioxidant and antibacterial activities than isolate 2.</p><p>Key words : Uncaria gambir, methyl derivative, antibacterial, antioxidantactivities</p>


2019 ◽  
Vol 31 (11) ◽  
pp. 2430-2438 ◽  
Author(s):  
Vian Yamin Jirjees ◽  
Veyan Taher Suleman ◽  
Abbas Ali Salih Al-Hamdani ◽  
Suzan Duraid Ahmed

A new Schiff base [1-((2-(1H-indol-3-yl)ethylimino)methyl)naphthalene-2-ol] (HL) has been synthesized by condensing (2-hydroxy-1-naphthaldehyde) with (2-(1H-indol-3-yl)ethylamine). In turn, its transition metal complexes were prepared having the general formula; [Pt(IV)Cl2(L)2], [Re(V)Cl2(L)2]Cl and [Pd(L)2], 2K[M(II)Cl2(L)2] where M(II) = Co, Ni, Cu] are reported. Ligand as well as metal complexes are characterized by spectroscopic techniques such as FT-IR, UV-visible, 13C & 1H NMR, mass, elemental analysis. The results suggested that the ligand behaves like a bidentate ligand for all the synthesized complexes. On the other hand, theoretical studies of the ligand as well its metal complexes were conducted at gas phase using HyperChem 8.0. These metal complexes exhibited good antibacterial activity.


2019 ◽  
Vol 9 (04) ◽  
pp. 666-670
Author(s):  
Abbas Washeel Salman ◽  
Zainab Nashaat Al-Saadi ◽  
Hayder Dawood Arkawazi ◽  
Michaele J. Hardie

Metal complexes of the ligand N-benzylimidazole (BnIm) and their in vitro antibacterial study are reported. The complexes of Co(II), Ni(II), Cu(II), Zn(II), and Ag(I) were synthesized by the reaction of the ligand with appropriate metal salt in 1:4 metal to ligand mole ratio. All the synthesized ligand and their complexes were characterized by physicochemical and spectroscopic techniques. Further, the compounds were screened for their antibacterial activity against a multi-resistance strain of Staphylococcus aureus (MRSA) using ciprofloxacin as a standard antibiotic. In general, all the tested compounds showed antibacterial activities at minimum inhibition concentration (MIC) level.


2018 ◽  
Vol 68 (12) ◽  
pp. 2845-2849
Author(s):  
Muhammad Liaqat ◽  
Tariq Mahmud ◽  
Muhammad Ashraf ◽  
Muhammad Muddassar ◽  
Muhammad Imran ◽  
...  

The titled Mannich base 2-[(3,4-dimethoxyphenyl)(pyrrolidin-1-yl)methyl]cyclohexanone (DPC) was synthesized by condensing 3,4-dimethoxybenzaldehyde, pyrrolidine and cyclohexanone. The synthesis was carried out by using ethanol as solvent. The development of the reaction was monitored on TLC. The complexation of synthesized Mannich base was carried out with Cu(II) chloride, Co(II) chloride, Ni(II) chloride and Fe(II) chloride. The structures of the synthesized Mannich base and its complexes were confirmed by FT-IR, UV-Vis, 1H-NMR, 13C-NMR, MS and TGA techniques. The proposed geometries of the metal complexes were established on the basis of metal/ligand ratio through AAS/ICP and electronic spectra. The synthesized compounds were evaluated for their antiurease and antibacterial activities. The complex with Co(II) show potent antiurease and antibacterial activity. The nature of SAR of Co(II) has been demonstrated using docking studies.


Author(s):  
Md. Ali Asraf ◽  
Md. Mahbubur Rahman ◽  
D. C. Kabiraz ◽  
Rezaul H. Ansary ◽  
Md. Faruk Hossen ◽  
...  

The salophen ligand and its complexes of Ni(II), Co(II), Cu(II), and Mn(II) are explored in terms of synthesis, conductivity; magnetic measurements, elemental analysis, FT-IR; electronic spectra, and antibacterial activities. The 3D molecular modeling structures of the ligand and its metal complexes are obtained by using Argus lab software. The experimental data shows that the ligand is tetradentate and bonded to the metal ion via N2O2 donor atoms. Antibacterial activity of the synthesized compounds are checked against the microbes Bacillus cereus and Escherichia coli. The metal complexes exhibit antibacterial activity higher than that of the free ligand. This works contributes to the science of Schiff base compounds, in addition to stimulating the synthesis of new ligands and its complexes for the future advancement of coordination chemistry.


2018 ◽  
Vol 16 (S1) ◽  
pp. S48-S54
Author(s):  
Y. Ez zoubi ◽  
S. Lairini ◽  
A. Farah ◽  
K. Taghzouti ◽  
A. El Ouali Lalami

The purpose of this study was to determine the chemical composition and to evaluate the antioxidant and antibacterial effects of the Moroccan Artemisia herba-alba Asso essential oil against foodborne pathogens. The essential oil of Artemisia herba-alba was analyzed by gas chromatography coupled with mass spectroscopy. The antibacterial activity was assessed against three bacterial strains isolated from foodstuff and three bacterial strains referenced by the ATCC (American Type Culture Collection) using the disk diffusion assay and the macrodilution method. The antioxidant activity was evaluated using the DPPH (2, 2-diphenyl-1- picrylhydrazyl) method. The fourteen compounds of the Artemisia herba-alba essential oil were identified; the main components were identified as β-thujone, chrysanthenone, α-terpineol, α-thujone, α-pinene, and bornyl acetate. The results of the antibacterial activity obtained showed a sensitivity of the different strains to Artemisia herba-alba essential oil with an inhibition diameter of 8.50 to 17.00 mm. Concerning the MICs (minimum inhibitory concentrations), the essential oil exhibited much higher antibacterial activity with MIC values of 2.5 μl/ml against Bacillus subtilis ATCC and Lactobacillus sp. The essential oil was found to be active by inhibiting free radicals with an IC50 (concentration of an inhibitor where the response is reduced by half) value of 2.9 μg/ml. These results indicate the possible use of the essential oil on food systems as an effective inhibitor of foodborne pathogens, as a natural antioxidant, and for potential pharmaceutical applications. However, further research is needed in order to determine the toxicity, antibacterial, and antioxidant effects in edible products.


Chemistry ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 783-799
Author(s):  
Maryam Ariannezhad ◽  
Davood Habibi ◽  
Somayyeh Heydari ◽  
Vahideh Khorramabadi

A new magnetic supported manganese-based coordination complex (Fe3O4@SiO2@CPTMS@MBOL@ Mn) was prepared in consecutive stages and characterized via various techniques (VSM, SEM, TEM, XRD, FT-IR, EDX, TG-DTA, and ICP). To evaluate its application, it was used for synthesis of divers Indazolophthalazinetriones in a simple procedure via the one-pot three-component condensation reaction of aldehydes, dimedone, and phthalhydrazide in ethanol under reflux conditions. The Mn catalyst can be recycled without any noticeable loss in catalytic activity. Additionally, the antibacterial properties of the nano-catalyst were studied against some bacterial strains.


Sign in / Sign up

Export Citation Format

Share Document