Symmetric differentials and variations of Hodge structures

2018 ◽  
Vol 2018 (743) ◽  
pp. 133-161 ◽  
Author(s):  
Yohan Brunebarbe

Abstract Let D be a simple normal crossing divisor in a smooth complex projective variety X. We show that the existence on X-D of a non-trivial polarized complex variation of Hodge structures with integral monodromy implies that the pair (X,D) has a non-zero logarithmic symmetric differential (a section of a symmetric power of the logarithmic cotangent bundle). When the corresponding period map is generically immersive, we show more precisely that the logarithmic cotangent bundle is big.

2013 ◽  
Vol 150 (3) ◽  
pp. 369-395 ◽  
Author(s):  
Damian Brotbek

AbstractIn this paper we examine different problems regarding complete intersection varieties of high multidegree in a smooth complex projective variety. First we prove an existence theorem for jet differential equations that generalizes a theorem of Diverio. Then we show how one can deduce hyperbolicity for generic complete intersections of high multidegree and high codimension from the known results on hypersurfaces. Finally, motivated by a conjecture of Debarre, we focus on the positivity of the cotangent bundle of complete intersections, and prove some results towards this conjecture; among other things, we prove that a generic complete intersection surface of high multidegree in a projective space of dimension at least four has an ample cotangent bundle.


2016 ◽  
Vol 152 (11) ◽  
pp. 2350-2370 ◽  
Author(s):  
Frédéric Campana ◽  
Mihai Păun

Let $X$ be a compact Kähler manifold, endowed with an effective reduced divisor $B=\sum Y_{k}$ having simple normal crossing support. We consider a closed form of $(1,1)$-type $\unicode[STIX]{x1D6FC}$ on $X$ whose corresponding class $\{\unicode[STIX]{x1D6FC}\}$ is nef, such that the class $c_{1}(K_{X}+B)+\{\unicode[STIX]{x1D6FC}\}\in H^{1,1}(X,\mathbb{R})$ is pseudo-effective. A particular case of the first result we establish in this short note states the following. Let $m$ be a positive integer, and let $L$ be a line bundle on $X$, such that there exists a generically injective morphism $L\rightarrow \bigotimes ^{m}T_{X}^{\star }\langle B\rangle$, where we denote by $T_{X}^{\star }\langle B\rangle$ the logarithmic cotangent bundle associated to the pair $(X,B)$. Then for any Kähler class $\{\unicode[STIX]{x1D714}\}$ on $X$, we have the inequality $$\begin{eqnarray}\displaystyle \int _{X}c_{1}(L)\wedge \{\unicode[STIX]{x1D714}\}^{n-1}\leqslant m\int _{X}(c_{1}(K_{X}+B)+\{\unicode[STIX]{x1D6FC}\})\wedge \{\unicode[STIX]{x1D714}\}^{n-1}.\end{eqnarray}$$ If $X$ is projective, then this result gives a generalization of a criterion due to Y. Miyaoka, concerning the generic semi-positivity: under the hypothesis above, let $Q$ be the quotient of $\bigotimes ^{m}T_{X}^{\star }\langle B\rangle$ by $L$. Then its degree on a generic complete intersection curve $C\subset X$ is bounded from below by $$\begin{eqnarray}\displaystyle \biggl(\frac{n^{m}-1}{n-1}-m\biggr)\int _{C}(c_{1}(K_{X}+B)+\{\unicode[STIX]{x1D6FC}\})-\frac{n^{m}-1}{n-1}\int _{C}\unicode[STIX]{x1D6FC}.\end{eqnarray}$$ As a consequence, we obtain a new proof of one of the main results of our previous work [F. Campana and M. Păun, Orbifold generic semi-positivity: an application to families of canonically polarized manifolds, Ann. Inst. Fourier (Grenoble) 65 (2015), 835–861].


2019 ◽  
Vol 19 (6) ◽  
pp. 2087-2125 ◽  
Author(s):  
Miguel Ángel Barja ◽  
Rita Pardini ◽  
Lidia Stoppino

Let $X$ be a normal complex projective variety, $T\subseteq X$ a subvariety of dimension $m$ (possibly $T=X$) and $a:X\rightarrow A$ a morphism to an abelian variety such that $\text{Pic}^{0}(A)$ injects into $\text{Pic}^{0}(T)$; let $L$ be a line bundle on $X$ and $\unicode[STIX]{x1D6FC}\in \text{Pic}^{0}(A)$ a general element.We introduce two new ingredients for the study of linear systems on $X$. First of all, we show the existence of a factorization of the map $a$, called the eventual map of $L$ on $T$, which controls the behavior of the linear systems $|L\otimes \unicode[STIX]{x1D6FC}|_{|T}$, asymptotically with respect to the pullbacks to the connected étale covers $X^{(d)}\rightarrow X$ induced by the $d$-th multiplication map of $A$.Second, we define the so-called continuous rank function$x\mapsto h_{a}^{0}(X_{|T},L+xM)$, where $M$ is the pullback of an ample divisor of $A$. This function extends to a continuous function of $x\in \mathbb{R}$, which is differentiable except possibly at countably many points; when $X=T$ we compute the left derivative explicitly.As an application, we give quick short proofs of a wide range of new Clifford–Severi inequalities, i.e., geographical bounds of the form $$\begin{eqnarray}\displaystyle \text{vol}_{X|T}(L)\geqslant C(m)h_{a}^{0}(X_{|T},L), & & \displaystyle \nonumber\end{eqnarray}$$ where $C(m)={\mathcal{O}}(m!)$ depends on several geometrical properties of $X$, $L$ or $a$.


2001 ◽  
Vol 73 (4) ◽  
pp. 475-482 ◽  
Author(s):  
MARCIO G. SOARES

We consider the question of relating extrinsic geometric characters of a smooth irreducible complex projective variety, which is invariant by a one-dimensional holomorphic foliation on a complex projective space, to geometric objects associated to the foliation.


Author(s):  
Martin de Borbon ◽  
Cristiano Spotti

Abstract We construct Asymptotically Locally Euclidean (ALE) and, more generally, asymptotically conical Calabi–Yau metrics with cone singularities along a compact simple normal crossing divisor. In particular, this includes the case of the minimal resolution of 2D quotient singularities for any finite subgroup $\Gamma \subset U(2)$ acting freely on the three-sphere, hence generalizing Kronheimer’s construction of smooth ALE gravitational instantons.


2005 ◽  
Vol 48 (3) ◽  
pp. 414-427 ◽  
Author(s):  
Kiumars Kaveh

AbstractLetXbe a smooth complex projective variety with a holomorphic vector field with isolated zero setZ. From the results of Carrell and Lieberman there exists a filtrationF0⊂F1⊂ · · · ofA(Z), the ring of ℂ-valued functions onZ, such thatas graded algebras. In this note, for a smooth projective toric variety and a vector field generated by the action of a 1-parameter subgroup of the torus, we work out this filtration. Our main result is an explicit connection between this filtration and the polytope algebra ofX.


2019 ◽  
Vol 155 (7) ◽  
pp. 1444-1456
Author(s):  
Sho Ejiri ◽  
Yoshinori Gongyo

We study the Iitaka–Kodaira dimension of nef relative anti-canonical divisors. As a consequence, we prove that given a complex projective variety with klt singularities, if the anti-canonical divisor is nef, then the dimension of a general fibre of the maximal rationally connected fibration is at least the Iitaka–Kodaira dimension of the anti-canonical divisor.


Sign in / Sign up

Export Citation Format

Share Document