scholarly journals Impact of interpolation techniques on the accuracy of large-scale digital elevation model

2020 ◽  
Vol 12 (1) ◽  
pp. 190-202 ◽  
Author(s):  
Maan Habib ◽  
Yazan Alzubi ◽  
Ahmad Malkawi ◽  
Mohammad Awwad

AbstractThere is no doubt that the tremendous development of information technology was one of the driving factors behind the great growth of surveying and geodesy science. This has spawned modern geospatial techniques for data capturing, acquisition, and visualization tools. Digital elevation model (DEM) is the 3D depiction of continuous elevation data over the Earth’s surface that is produced through many procedures such as remote sensing, photogrammetry, and land surveying. DEMs are essential for various surveying and civil engineering applications to generate topographic maps for construction projects at a scale that varies from 1:500 to 1:2,000. GIS offers a powerful tool to create a DEM with high resolution from accurate land survey measurements using interpolation methods. The aim of this research is to investigate the impact of estimation techniques on generating a reliable and accurate DEM suitable for large-scale mapping. As a part of this study, the deterministic interpolation algorithms such as ANUDEM (Topo to Raster), inverse distance weighted (IDW), and triangulated irregular network (TIN) were tested using the ArcGIS desktop for elevation data obtained from real total station readings, with different landforms to show the effect of terrain roughness, data density, and interpolation process on DEM accuracy. Furthermore, comparison and validation of each interpolator were carried out through the cross-validation method and numerous graphical representations of the DEM. Finally, the results of the investigations showed that ANUDEM and TIN models are similar and significantly better than those attained from IDW.

2021 ◽  
Author(s):  
Shizhou Ma ◽  
Karen Beazley ◽  
Patrick Nussey ◽  
Chris Greene

Abstract The Active River Area (ARA) is a spatial approach for identifying the extent of functional riparian area. Given known limitations in terms of input elevation data quality and methodology, ARA studies to date have not achieved effective computer-based ARA-component delineation, limiting the efficacy of the ARA framework in terms of informing riparian conservation and management. To achieve framework refinement and determine the optimal input elevation data for future ARA studies, this study tested a novel Digital Elevation Model (DEM) smoothing algorithm and assessed ARA outputs derived from a range of DEMs for accuracy and efficiency. It was found that the tested DEM smoothing algorithm allows the ARA framework to take advantage of high-resolution LiDAR DEM and considerably improves the accuracy of high-resolution LiDAR DEM derived ARA results; smoothed LiDAR DEM in 5-meter spatial resolution best balanced ARA accuracy and data processing efficiency and is ultimately recommended for future ARA delineations across large regions.


Author(s):  
M. Hubacek ◽  
V. Kovarik ◽  
V. Kratochvil

Digital elevation models are today a common part of geographic information systems and derived applications. The way of their creation is varied. It depends on the extent of area, required accuracy, delivery time, financial resources and technologies available. The first model covering the whole territory of the Czech Republic was created already in the early 1980's. Currently, the 5th DEM generation is being finished. Data collection for this model was realized using the airborne laser scanning which allowed creating the DEM of a new generation having the precision up to a decimetre. Model of such a precision expands the possibilities of employing the DEM and it also offers new opportunities for the use of elevation data especially in a domain of modelling the phenomena dependent on highly accurate data. The examples are precise modelling of hydrological phenomena, studying micro-relief objects, modelling the vehicle movement, detecting and describing historical changes of a landscape, designing constructions etc. <br><br> Due to a nature of the technology used for collecting data and generating DEM, it is assumed that the resulting model achieves lower accuracy in areas covered by vegetation and in built-up areas. Therefore the verification of model accuracy was carried out in five selected areas in Moravia. The network of check points was established using a total station in each area. To determine the reference heights of check points, the known geodetic points whose heights were defined using levelling were used. Up to several thousands of points were surveyed in each area. Individual points were selected according to a different configuration of relief, different surface types, and different vegetation coverage. The sets of deviations were obtained by comparing the DEM 5G heights with reference heights which was followed by verification of tested elevation model. Results of the analysis showed that the model reaches generally higher precision than the declared one in majority of areas. This applies in particular to areas covered by vegetation. By contrast, the larger deviations occurred in relation to the slope of the terrain, in particular in the micro-relief objects. The results are presented in this article.


2019 ◽  
Vol 11 (9) ◽  
pp. 1096 ◽  
Author(s):  
Hiroyuki Miura

Rapid identification of affected areas and volumes in a large-scale debris flow disaster is important for early-stage recovery and debris management planning. This study introduces a methodology for fusion analysis of optical satellite images and digital elevation model (DEM) for simplified quantification of volumes in a debris flow event. The LiDAR data, the pre- and post-event Sentinel-2 images and the pre-event DEM in Hiroshima, Japan affected by the debris flow disaster on July 2018 are analyzed in this study. Erosion depth by the debris flows is empirically modeled from the pre- and post-event LiDAR-derived DEMs. Erosion areas are detected from the change detection of the satellite images and the DEM-based debris flow propagation analysis by providing predefined sources. The volumes and their pattern are estimated from the detected erosion areas by multiplying the empirical erosion depth. The result of the volume estimations show good agreement with the LiDAR-derived volumes.


Geomorphology ◽  
2020 ◽  
Vol 369 ◽  
pp. 107374
Author(s):  
Shuyan Zhang ◽  
Yong Ma ◽  
Fu Chen ◽  
Jianbo Liu ◽  
Fulong Chen ◽  
...  

Geosciences ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 360 ◽  
Author(s):  
Sansar Raj ◽  
Thimmaiah

Landslides are one of the most damaging geological hazards in mountainous regions such as the Himalayas. The Himalayan region is, tectonically, the most active region in the world that is highly vulnerable to landslides and associated hazards. Landslide susceptibility mapping (LSM) is a useful tool for understanding the probability of the spatial distribution of future landslide regions. In this research, the landslide inventory datasets were collected during the field study of the Kullu valley in July 2018, and 149 landslide locations were collected as global positioning system (GPS) points. The present study evaluates the LSM using three different spatial resolution of the digital elevation model (DEM) derived from three different sources. The data-driven traditional frequency ratio (FR) model was used for this study. The FR model was used for this research to assess the impact of the different spatial resolution of DEMs on the LSM. DEM data was derived from Advanced Land Observing Satellite-1 (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) ALOS-PALSAR for 12.5 m, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global for 30 m, and the Shuttle Radar Topography Mission (SRTM) for 90 m. As an input, we used eight landslide conditioning factors based on the study area and topographic features of the Kullu valley in the Himalayas. The ASTER-Global 30m DEM showed higher accuracy of 0.910 compared to 0.839 for 12.5 m and 0.824 for 90 m DEM resolution. This study shows that that 30 m resolution is better suited for LSM for the Kullu valley region in the Himalayas. The LSM can be used for mitigation and future planning for spatial planners and developmental authorities in the region.


2020 ◽  
Vol 9 (5) ◽  
pp. 334
Author(s):  
Timofey E. Samsonov

Combining misaligned spatial data from different sources complicates spatial analysis and creation of maps. Conflation is a process that solves the misalignment problem through spatial adjustment or attribute transfer between similar features in two datasets. Even though a combination of digital elevation model (DEM) and vector hydrographic lines is a common practice in spatial analysis and mapping, no method for automated conflation between these spatial data types has been developed so far. The problem of DEM and hydrography misalignment arises not only in map compilation, but also during the production of generalized datasets. There is a lack of automated solutions which can ensure that the drainage network represented in the surface of generalized DEM is spatially adjusted with independently generalized vector hydrography. We propose a new method that performs the conflation of DEM with linear hydrographic data and is embeddable into DEM generalization process. Given a set of reference hydrographic lines, our method automatically recognizes the most similar paths on DEM surface called counterpart streams. The elevation data extracted from DEM is then rubbersheeted locally using the links between counterpart streams and reference lines, and the conflated DEM is reconstructed from the rubbersheeted elevation data. The algorithm developed for extraction of counterpart streams ensures that the resulting set of lines comprises the network similar to the network of ordered reference lines. We also show how our approach can be seamlessly integrated into a TIN-based structural DEM generalization process with spatial adjustment to pre-generalized hydrographic lines as additional requirement. The combination of the GEBCO_2019 DEM and the Natural Earth 10M vector dataset is used to illustrate the effectiveness of DEM conflation both in map compilation and map generalization workflows. Resulting maps are geographically correct and are aesthetically more pleasing in comparison to a straightforward combination of misaligned DEM and hydrographic lines without conflation.


Land ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 430
Author(s):  
Michał Sobala ◽  
Urszula Myga-Piątek ◽  
Bartłomiej Szypuła

A viewshed analysis is of great importance in mountainous areas characterized by high landscape values. The aim of this research was to determine the impact of reforestation occurring on former pasturelands on changes in the viewshed, and to quantify changes in the surface of glades. We combine a horizontal and a vertical approach to landscape analysis. The changes in non-forest areas and the viewshed from viewpoints located in glades were calculated using historical cartographic materials and a more recent Digital Elevation Model and Digital Surface Model. An analysis was conducted using a Visibility tool in ArcGIS. The non-forest areas decreased in the period 1848–2015. The viewshed in the majority of viewpoints also decreased in the period 1848–2015. In the majority of cases, the maximal viewsheds were calculated in 1879/1885 and 1933 (43.8% of the analyzed cases), whereas the minimal ones were calculated in 2015 (almost 57.5% of analyzed cases). Changes in the viewshed range from 0.2 to 23.5 km2 with half the cases analyzed being no more than 1.4 km2. The results indicate that forest succession on abandoned glades does not always cause a decline in the viewshed. Deforestation in neighboring areas may be another factor that has an influence on the decline.


2014 ◽  
Vol 571-572 ◽  
pp. 792-795
Author(s):  
Xiao Qing Zhang ◽  
Kun Hua Wu

Floods usually cause large-scale loss of human life and wide spread damage to properties. Determining flood zone is the core of flood damage assessment and flood control decision. The aim of this paper is to delineate the flood inundation area and estimate economic losses arising from flood using the digital elevation model data and geographic information system techniques. Flood extent estimation showed that digital elevation model data is very precious to model inundation, however, in order to be spatially explicit flood model, high resolution DEM is necessary. Finally, Analyses for the submergence area calculation accuracy.


OSEANA ◽  
2018 ◽  
Vol 43 (4) ◽  
Author(s):  
Marindah Yulia Iswari ◽  
Kasih Anggraini

DEMNAS : NATIONAL DIGITAL ELEVATION MODEL FOR COASTAL APPLICATION. DEM is a digital data which contain information about elevation. In Indonesia, DEM can be generated from elevation points or contours in RBI (Rupabumi Indonesia). DEM can be performed to research of coastal application i.e. inundation or tsunami. DEM can help to analyze vulnerability or evacuation zone for coastal hazards. DEMNAS is one product of BIG (Geospatial Information Agency) which consist of elevation data from remote sensing images. DEMNAS data has not been widely used and is still being developed but DEMNAS has an advantage of spatial resolution. DEMNAS has spatial resolution 0.27 arc-second, which is bigger than the spatial resolution of global DEM.


2021 ◽  
Author(s):  
Bernhard Lehner ◽  
Achim Roth ◽  
Martin Huber ◽  
Mira Anand ◽  
Günther Grill ◽  
...  

&lt;p&gt;Since its introduction in 2008, the HydroSHEDS database (www.hydrosheds.org) has transformed large-scale hydro-ecological research and applications worldwide by offering standardized spatial units for hydrological assessments. At its core, HydroSHEDS provides digital hydrographic information that can be applied in Geographic Information Software (GIS) or hydrological models to delineate river networks and catchment boundaries at multiple scales, from local to global. Its various data layers form the basis for applications in a wide range of disciplines including environmental, conservation, socioeconomic, human health, and sustainability studies.&lt;/p&gt;&lt;p&gt;Version 1 of HydroSHEDS was derived from the digital elevation model of the Shuttle Radar Topography Mission (SRTM) at a pixel resolution of 3 arc-seconds (~90 meters at the equator). It was created using customized processing and optimization algorithms and a high degree of manual quality control. Results are available at varying resolutions, ranging from 3 arc-seconds (~90 m) to 5 minutes (~10 km), and in nested sub-basin structures, making the data uniquely suitable for applications at multiple scales. A suite of related data collections and value-added information, foremost the HydroATLAS compilation of over 50 hydro-environmental attributes for every river reach and sub-basin, continuously enhance the versatility of the HydroSHEDS family of products. Yet version 1 of HydroSHEDS shows some important limitations. In particular, coverage above 60&amp;#176; northern latitude (i.e., largely the Arctic) is missing for the 3 arc-second product and is of low quality for coarser products because no SRTM elevation data are available for this region. Also, some areas are affected by inherent data gaps or other errors that could not be fully resolved at the time of creating version 1 of HydroSHEDS.&lt;/p&gt;&lt;p&gt;Today, the TanDEM-X dataset (TerraSAR-X add-on for Digital Elevation Measurement), created in partnership between the German Aerospace Agency (DLR) and Airbus, offers a new digital elevation model covering the entire global land surface including northern latitudes. In a collaborative project, this dataset is used to extract HydroSHEDS v2.0, following the same basic specifications as version 1. DLR is processing the original 12 m resolution TanDEM-X data to create a hydrologically pre-conditioned version at 3 arc-second resolution. In this step, corrections with high-resolution vegetation and settlement maps are applied to reduce distortions caused by vegetation cover and in built-up areas. Following this preprocessing, refined hydrological optimization and correction algorithms are used to derive the drainage pathways, including improved &amp;#8216;stream-burning&amp;#8217; techniques that incorporate recent data products such as high-resolution terrestrial open water masks and improved tracing of drainage pathways as center lines in global lake and river maps. The resulting HydroSHEDS v2.0 database will provide river networks and catchment boundaries at full global coverage. Release of the data under a free license is scheduled for 2022, with regions above 60&amp;#176; northern latitude being completed first in 2021.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document