An Avant-Garde Handling of Temporal-Spatial Fractional Physical Models
AbstractIn the present study, we dilate the differential transform scheme to develop a reliable scheme for studying analytically the mutual impact of temporal and spatial fractional derivatives in Caputo’s sense. We also provide a mathematical framework for the transformed equations of some fundamental functional forms in fractal 2-dimensional space. To demonstrate the effectiveness of our proposed scheme, we first provide an elegant scheme to estimate the (mixed-higher) Caputo-fractional derivatives, and then we give an analytical treatment for several (non)linear physical case studies in fractal 2-dimensional space. The study concluded that the proposed scheme is very efficacious and convenient in extracting solutions for wide physical applications endowed with two different memory parameters as well as in approximating fractional derivatives.