An Avant-Garde Handling of Temporal-Spatial Fractional Physical Models

Author(s):  
Imad Jaradat ◽  
Marwan Alquran ◽  
Qutaibeh Katatbeh ◽  
Feras Yousef ◽  
Shaher Momani ◽  
...  

AbstractIn the present study, we dilate the differential transform scheme to develop a reliable scheme for studying analytically the mutual impact of temporal and spatial fractional derivatives in Caputo’s sense. We also provide a mathematical framework for the transformed equations of some fundamental functional forms in fractal 2-dimensional space. To demonstrate the effectiveness of our proposed scheme, we first provide an elegant scheme to estimate the (mixed-higher) Caputo-fractional derivatives, and then we give an analytical treatment for several (non)linear physical case studies in fractal 2-dimensional space. The study concluded that the proposed scheme is very efficacious and convenient in extracting solutions for wide physical applications endowed with two different memory parameters as well as in approximating fractional derivatives.

2012 ◽  
Vol 9 (2) ◽  
pp. 65-70
Author(s):  
E.V. Karachurina ◽  
S.Yu. Lukashchuk

An inverse coefficient problem is considered for time-fractional anomalous diffusion equations with the Riemann-Liouville and Caputo fractional derivatives. A numerical algorithm is proposed for identification of anomalous diffusivity which is considered as a function of concentration. The algorithm is based on transformation of inverse coefficient problem to extremum problem for the residual functional. The steepest descent method is used for numerical solving of this extremum problem. Necessary expressions for calculating gradient of residual functional are presented. The efficiency of the proposed algorithm is illustrated by several test examples.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1431
Author(s):  
Bilal Basti ◽  
Nacereddine Hammami ◽  
Imadeddine Berrabah ◽  
Farid Nouioua ◽  
Rabah Djemiat ◽  
...  

This paper discusses and provides some analytical studies for a modified fractional-order SIRD mathematical model of the COVID-19 epidemic in the sense of the Caputo–Katugampola fractional derivative that allows treating of the biological models of infectious diseases and unifies the Hadamard and Caputo fractional derivatives into a single form. By considering the vaccine parameter of the suspected population, we compute and derive several stability results based on some symmetrical parameters that satisfy some conditions that prevent the pandemic. The paper also investigates the problem of the existence and uniqueness of solutions for the modified SIRD model. It does so by applying the properties of Schauder’s and Banach’s fixed point theorems.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Mohammed A. Almalahi ◽  
Satish K. Panchal ◽  
Fahd Jarad ◽  
Thabet Abdeljawad

AbstractThis study is aimed to investigate the sufficient conditions of the existence of unique solutions and the Ulam–Hyers–Mittag-Leffler (UHML) stability for a tripled system of weighted generalized Caputo fractional derivatives investigated by Jarad et al. (Fractals 28:2040011 2020) in the frame of Chebyshev and Bielecki norms with time delay. The acquired results are obtained by using Banach fixed point theorems and the Picard operator (PO) method. Finally, a pertinent example of the results obtained is demonstrated.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Assia Guezane-Lakoud ◽  
Adem Kılıçman

Abstract The purpose of this study is to discuss the existence of solutions for a boundary value problem at resonance generated by a nonlinear differential equation involving both right and left Caputo fractional derivatives. The proofs of the existence of solutions are mainly based on Mawhin’s coincidence degree theory. We provide an example to illustrate the main result.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Adel Lachouri ◽  
Mohammed S. Abdo ◽  
Abdelouaheb Ardjouni ◽  
Sina Etemad ◽  
Shahram Rezapour

AbstractIn this paper, we study the existence of solutions for a generalized sequential Caputo-type fractional neutral differential inclusion with generalized integral conditions. The used fractional operator has the generalized kernel in the format of $( \vartheta (t)-\vartheta (s)) $ ( ϑ ( t ) − ϑ ( s ) ) along with differential operator $\frac{1}{\vartheta '(t)}\,\frac{\mathrm{d}}{\mathrm{d}t}$ 1 ϑ ′ ( t ) d d t . We obtain existence results for two cases of convex-valued and nonconvex-valued multifunctions in two separated sections. We derive our findings by means of the fixed point principles in the context of the set-valued analysis. We give two suitable examples to validate the theoretical results.


Author(s):  
Mohamed Houas ◽  
Mohamed Bezziou

In this paper, we discuss the existence, uniqueness and stability of solutions for a nonlocal boundary value problem of nonlinear fractional differential equations with two Caputo fractional derivatives. By applying the contraction mapping and O’Regan fixed point theorem, the existence results are obtained. We also derive the Ulam-Hyers stability of solutions. Finally, some examples are given to illustrate our results.


Sign in / Sign up

Export Citation Format

Share Document