Modelling of Influence of Hypersonic Conditions on Gyroscopic Inertial Navigation Sensor Suspension

2017 ◽  
Vol 24 (2) ◽  
pp. 357-368 ◽  
Author(s):  
Igor Korobiichuk ◽  
Volodimir Karachun ◽  
Viktorij Mel’nick ◽  
Maciej Kachniarz

AbstractThe upcoming hypersonic technologies pose a difficult task for air navigation systems. The article presents a designed model of elastic interaction of penetrating acoustic radiation with flat isotropic suspension elements of an inertial navigation sensor in the operational conditions of hypersonic flight. It has been shown that the acoustic transparency effect in the form of a spatial-frequency resonance becomes possible with simultaneous manifestation of the wave coincidence condition in the acoustic field and equality of the natural oscillation frequency of a finite-size plate and a forced oscillation frequency of an infinite plate. The effect can lead to additional measurement errors of the navigation system. Using the model, the worst and best case suspension oscillation frequencies can be determined, which will help during the design of a navigation system.

2012 ◽  
Vol 245 ◽  
pp. 323-329 ◽  
Author(s):  
Muhammad Ushaq ◽  
Jian Cheng Fang

Inertial navigation systems exhibit position errors that tend to grow with time in an unbounded mode. This degradation is due, in part, to errors in the initialization of the inertial measurement unit and inertial sensor imperfections such as accelerometer biases and gyroscope drifts. Mitigation to this growth and bounding the errors is to update the inertial navigation system periodically with external position (and/or velocity, attitude) fixes. The synergistic effect is obtained through external measurements updating the inertial navigation system using Kalman filter algorithm. It is a natural requirement that the inertial data and data from the external aids be combined in an optimal and efficient manner. In this paper an efficient method for integration of Strapdown Inertia Navigation System (SINS), Global Positioning System (GPS) and Doppler radar is presented using a centralized linear Kalman filter by treating vector measurements with uncorrelated errors as scalars. Two main advantages have been obtained with this improved scheme. First is the reduced computation time as the number of arithmetic computation required for processing a vector as successive scalar measurements is significantly less than the corresponding number of operations for vector measurement processing. Second advantage is the improved numerical accuracy as avoiding matrix inversion in the implementation of covariance equations improves the robustness of the covariance computations against round off errors.


1960 ◽  
Vol 13 (3) ◽  
pp. 301-315
Author(s):  
Richard B. Seeley ◽  
Roy Dale Cole

This paper describes and discusses some of the techniques by which a moving inertial platform may be aligned by using external velocity measurements and also presents some of the major problems and error sources affecting such alignment. It is based upon the results of a 3-year study, of inertial and doppler-inertial navigation at the Naval Ordnance Test Station, China Lake, California, and, in general, applies to inertial navigation systems which erect to either the local level or the mass-attraction vertical. Although rudimentary derivations are made of the alignment techniques, the paper is largely nonmathematical for ease of reading. Emphasis is placed upon the major errors affecting the alignment. This paper describes and discusses some of the techniques by which a moving inertial platform may be aligned by using external velocity measurements and also presents some of the major problems and error sources affecting such alignment. It is based upon the results of a 3-year study, of inertial and doppler-inertial navigation at the Naval Ordnance Test Station, China Lake, California, and, in general, applies to inertial navigation systems which erect to either the local level or the mass-attraction vertical. Although rudimentary derivations are made of the alignment techniques, the paper is largely nonmathematical for ease of reading. Emphasis is placed upon the major errors affecting the alignment.


2020 ◽  
Vol 28 (4) ◽  
pp. 3-15
Author(s):  
V.G. Peshekhonov ◽  
◽  

The paper addresses the systematic error of an inertial navigation system, caused by the discrepancy between the plumb line and the normal to the reference ellipsoid surface. The methods of this discrepancy estimation, and their use for correcting the output data of inertial navigation systems are studied.


2020 ◽  
Vol 12 (21) ◽  
pp. 3639
Author(s):  
Michal Labowski ◽  
Piotr Kaniewski

Navigation systems used for the motion correction (MOCO) of radar terrain images have several limitations, including the maximum duration of the measurement session, the time duration of the synthetic aperture, and only focusing on minimizing long-term positioning errors of the radar host. To overcome these limitations, a novel, multi-instance inertial navigation system (MINS) has been proposed by the authors. In this approach, the classic inertial navigation system (INS), which works from the beginning to the end of the measurement session, was replaced by short INS instances. The initialization of each INS instance is performed using an INS/GPS system and is triggered by exceeding the positioning error of the currently operating instance. According to this procedure, both INS instances operate simultaneously. The parallel work of the instances is performed until the image line can be calculated using navigation data originating only from the new instance. The described mechanism aims to perform instance switching in a manner that does not disturb the initial phases of echo signals processed in a single aperture. The obtained results indicate that the proposed method improves the imaging quality compared to the methods using the classic INS or the INS/GPS system.


1967 ◽  
Vol 20 (4) ◽  
pp. 449-463
Author(s):  
P. R. J. Reynolds

This paper covers the performance of the Sperry SGN-10 Inertial Navigation System as demonstrated by the operation of dual systems installed in a standard operational configuration aboard four jet aircraft of Pan American World Airways incidental to a preoperational engineering evaluation programme conducted for the Federal Aviation Administration during the latter part of 1966. The primary object of this evaluation programme was to determine the system's capability of meeting the following requirements of the F.A.A.'s Advisory Circular covering the use of inertial navigation systems in U.S.- registered civil aircraft, namely:(1) Maintain a position accuracy within 20 n.m. in the across-track dimension and 25 n.m. in the along-track dimension for 95 per cent of the time on flights up to and including ten hours duration.(2) Automatically accomplish initial platform alignment in a normal manner in latitudes up to and including the highest normally used in civil aviation.(3) Perform all its designed navigational functions in a normal manner at all latitudes, inclusive of polar and equatorial overflights.


2013 ◽  
Vol 332 ◽  
pp. 79-85
Author(s):  
Outamazirt Fariz ◽  
Muhammad Ushaq ◽  
Yan Lin ◽  
Fu Li

Strapdown Inertial Navigation Systems (SINS) displays position errors which grow with time in an unbounded manner. This degradation is due to the errors in the initialization of the inertial measurement unit, and inertial sensor imperfections such as accelerometer biases and gyroscope drifts. Improvement to this unbounded growth in errors can be made by updating the inertial navigation system solutions periodically with external position fixes, velocity fixes, attitude fixes or any combination of these fixes. The increased accuracy is obtained through external measurements updating inertial navigation system using Kalman filter algorithm. It is the basic requirement that the inertial data and data from the external aids be combined in an optimal and efficient manner. In this paper an efficient method for integration of Strapdown Inertial Navigation System (SINS), Global Positioning System (GPS) is presented using a centralized linear Kalman filter.


Author(s):  
Guenther Retscher ◽  
Allison Kealy

With the increasing ubiquity of smartphones and tablets, users are now routinely carrying a variety of sensors with them wherever they go. These devices are enabling technologies for ubiquitous computing, facilitating continuous updates of a user's context. They have built-in MEMS-based accelerometers for ubiquitous activity monitoring and there is a growing interest in how to use these together with gyroscopes and magnetometers to build dead reckoning (DR) systems for location tracking. Navigation in complex environments is needed mainly by consumer users, private vehicles, and pedestrians. Therefore, the navigation system has to be small, easy to use, and have reasonably low levels of power consumption and price. The technologies and techniques discussed here include the fusion of inertial navigation (IN) and other sensors, positioning based on signals from wireless networks (such as Wi-Fi), image-based methods, cooperative positioning systems, and map matching (MM). The state-of-the-art of MEMS-based location sensors and their integration into modern navigation systems are also presented.


2013 ◽  
Vol 66 (5) ◽  
pp. 751-772 ◽  
Author(s):  
Xueyun Wang ◽  
Jie Wu ◽  
Tao Xu ◽  
Wei Wang

Inertial Navigation Systems (INS) were large, heavy and expensive until the development of cost-effective inertial sensors constructed with Micro-electro-mechanical systems (MEMS). However, the large errors and poor error repeatability of MEMS sensors make them inadequate for application in many situations even with frequent calibration. To solve this problem, a systematic error auto-compensation method, Rotation Modulation (RM) is introduced and detailed. RM does no damage to autonomy, which is one of the most important characteristics of an INS. In this paper, the RM effects on navigation performance are analysed and different forms of rotation schemes are discussed. A MEMS-based INS with the RM technique applied is developed and specific calibrations related to rotation are investigated. Experiments on the developed system are conducted and results verify that RM can significantly improve navigation performance of MEMS-based INS. The attitude accuracy is improved by a factor of 5, and velocity/position accuracy by a factor of 10.


1995 ◽  
Vol 48 (1) ◽  
pp. 114-135 ◽  
Author(s):  
A. Svensson ◽  
J. Holst

This article treats integration of navigation data from a variety of sensors in a submarine using extended Kalman filtering in order to improve the accuracy of position, velocity and heading estimates. The problem has been restricted to planar motion. The measurement system consists of an inertial navigation system, a gyro compass, a passive log, an active log and a satellite navigation system. These subsystems are briefly described and models for the measurement errors are given.Four different extended Kalman filters have been tested by computer simulations. The simulations distinctly show that the passive subsystems alone are insufficient to improve the estimate of the position obtained from the inertial navigation system. A log measuring the velocity relative to the ground or a position determining system are needed. The improvement depends on the accuracy of the measuring instruments, the extent of time the instrument can be used and which filter is being used. The most complex filter, which contains fourteen states, eight to describe the motion of the submarine and six to describe the measurement system, including a model of the inertial navigation system, works very well.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Lei Chen ◽  
G. H. Wang ◽  
Ilir F. Progri

For mobile radar, offset biases and attitude biases influence radar measurements simultaneously. Attitude biases generated from the errors of the inertial navigation system (INS) of the platform can be converted into equivalent radar measurement errors by three analytical expressions (range, azimuth, and elevation, resp.). These expressions are unique and embody the dependences between the offset and attitude biases. The dependences indicate that all the attitude biases can be viewed as and merged into some kind of offset biases. Based on this, a unified registration model (URM) is proposed which only contains radar “offset biases” in the form of system variables in the registration equations, where, in fact, the “offset biases” contain the influences of the attitude biases. URM has the same form as the registration model of stationary radar network where no attitude biases exist. URM can compensate radar offset and attitude biases simultaneously and has minor computation burden compared with other registration models for mobile radar network.


Sign in / Sign up

Export Citation Format

Share Document