On weakly 𝓗-permutable subgroups of finite groups

2019 ◽  
Vol 69 (4) ◽  
pp. 763-772
Author(s):  
Chenchen Cao ◽  
Venus Amjid ◽  
Chi Zhang

Abstract Let σ = {σi ∣i ∈ I} be some partition of the set of all primes ℙ, G be a finite group and σ(G) = {σi∣σi ∩ π(G) ≠ ∅}. G is said to be σ-primary if ∣σ(G)∣ ≤ 1. A subgroup H of G is said to be σ-subnormal in G if there exists a subgroup chain H = H0 ≤ H1 ≤ … ≤ Ht = G such that either Hi−1 is normal in Hi or Hi/(Hi−1)Hi is σ-primary for all i = 1, …, t. A set 𝓗 of subgroups of G is said to be a complete Hall σ-set of G if every non-identity member of 𝓗 is a Hall σi-subgroup of G for some i and 𝓗 contains exactly one Hall σi-subgroup of G for every σi ∈ σ(G). Let 𝓗 be a complete Hall σ-set of G. A subgroup H of G is said to be 𝓗-permutable if HA = AH for all A ∈ 𝓗. We say that a subgroup H of G is weakly 𝓗-permutable in G if there exists a σ-subnormal subgroup T of G such that G = HT and H ∩ T ≤ H𝓗, where H𝓗 is the subgroup of H generated by all those subgroups of H which are 𝓗-permutable. By using the weakly 𝓗-permutable subgroups, we establish some new criteria for a group G to be σ-soluble and supersoluble, and we also give the conditions under which a normal subgroup of G is hypercyclically embedded.

Author(s):  
Viktoria S. Zakrevskaya

Let σ = {σi|i ∈ I } be a partition of the set of all primes ℙ and G be a finite group. A set ℋ  of subgroups of G is said to be a complete Hall σ-set of G if every member ≠1 of ℋ  is a Hall σi-subgroup of G for some i ∈ I and ℋ contains exactly one Hall σi-subgroup of G for every i such that σi ⌒ π(G)  ≠ ∅.  A group is said to be σ-primary if it is a finite σi-group for some i. A subgroup A of G is said to be: σ-permutable in G if G possesses a complete Hall σ-set ℋ  such that AH x = H  xA for all H ∈ ℋ  and all x ∈ G; σ-subnormal in G if there is a subgroup chain A = A0 ≤ A1 ≤ … ≤ At = G such that either Ai − 1 ⊴ Ai or Ai /(Ai − 1)Ai is σ-primary for all i = 1, …, t; 𝔄-normal in G if every chief factor of G between AG and AG is cyclic. We say that a subgroup H of G is: (i) partially σ-permutable in G if there are a 𝔄-normal subgroup A and a σ-permutable subgroup B of G such that H = < A, B >; (ii) (𝔄, σ)-embedded in G if there are a partially σ-permutable subgroup S and a σ-subnormal subgroup T of G such that G = HT and H ∩ T ≤ S ≤ H. We study G assuming that some subgroups of G are partially σ-permutable or (𝔄, σ)-embedded in G. Some known results are generalised.


2014 ◽  
Vol 56 (3) ◽  
pp. 691-703 ◽  
Author(s):  
A. BALLESTER-BOLINCHES ◽  
J. C. BEIDLEMAN ◽  
A. D. FELDMAN ◽  
M. F. RAGLAND

AbstractFor a formation $\mathfrak F$, a subgroup M of a finite group G is said to be $\mathfrak F$-pronormal in G if for each g ∈ G, there exists x ∈ 〈U,Ug〉$\mathfrak F$ such that Ux = Ug. Let f be a subgroup embedding functor such that f(G) contains the set of normal subgroups of G and is contained in the set of Sylow-permutable subgroups of G for every finite group G. Given such an f, let fT denote the class of finite groups in which f(G) is the set of subnormal subgroups of G; this is the class of all finite groups G in which to be in f(G) is a transitive relation in G. A subgroup M of a finite group G is said to be $\mathfrak F$-normal in G if G/CoreG(M) belongs to $\mathfrak F$. A subgroup U of a finite group G is called K-$\mathfrak F$-subnormal in G if either U = G or there exist subgroups U = U0 ≤ U1 ≤ . . . ≤ Un = G such that Ui–1 is either normal or $\mathfrak F$-normal in Ui, for i = 1,2, …, n. We call a finite group G an $fT_{\mathfrak F}$-group if every K-$\mathfrak F$-subnormal subgroup of G is in f(G). In this paper, we analyse for certain formations $\mathfrak F$ the structure of $fT_{\mathfrak F}$-groups. We pay special attention to the $\mathfrak F$-pronormal subgroups in this analysis.


1969 ◽  
Vol 21 ◽  
pp. 418-429 ◽  
Author(s):  
James C. Beidleman

The theory of generalized Frattini subgroups of a finite group is continued in this paper. Several equivalent conditions are given for a proper normal subgroup H of a finite group G to be a generalized Frattini subgroup of G. One such condition on H is that K is nilpotent for each normal subgroup K of G such that K/H is nilpotent. From this result, it follows that the weakly hyper-central normal subgroups of a finite non-nilpotent group G are generalized Frattini subgroups of G.Let H be a generalized Frattini subgroup of G and let K be a subnormal subgroup of G which properly contains H. Then H is a generalized Frattini subgroup of K.Let ϕ(G) be the Frattini subgroup of G. Suppose that G/ϕ(G) is nonnilpotent, but every proper subgroup of G/ϕ(G) is nilpotent. Then ϕ(G) is the unique maximal generalized Frattini subgroup of G.


2017 ◽  
Vol 16 (12) ◽  
pp. 1750224
Author(s):  
S. E. Mirdamadi ◽  
G. R. Rezaeezadeh

A subgroup [Formula: see text] of a finite group [Formula: see text] is said to be [Formula: see text]-conditionally permutable in [Formula: see text] if for every Sylow subgroup [Formula: see text] of [Formula: see text], there exists an element [Formula: see text] such that [Formula: see text]. In this paper, the structure of solvable group [Formula: see text] in which every [Formula: see text]-subgroup of [Formula: see text] or every subnormal subgroup of [Formula: see text] is [Formula: see text]-conditionally permutable in [Formula: see text] is described. Let [Formula: see text] be a solvable group and [Formula: see text] the largest prime dividing [Formula: see text]. Suppose further that [Formula: see text] is the Sylow [Formula: see text]-subgroup of [Formula: see text] and [Formula: see text]. We are going to show that [Formula: see text] is a PST-group if and only if every subnormal subgroup of [Formula: see text] is [Formula: see text]-conditionally permutable in [Formula: see text].


Author(s):  
Muhammad Tanveer Hussain ◽  
Venus Amjid

Let [Formula: see text] be a finite group, [Formula: see text] be a partition of the set of all primes [Formula: see text] and [Formula: see text]. A set [Formula: see text] of subgroups of [Formula: see text] is said to be a complete Hall[Formula: see text]-set of [Formula: see text] if every non-identity member of [Formula: see text] is a Hall [Formula: see text]-subgroup of [Formula: see text] and [Formula: see text] contains exactly one Hall [Formula: see text]-subgroup of [Formula: see text] for every [Formula: see text]. A subgroup [Formula: see text] of [Formula: see text] is said to be [Formula: see text]-permutable in [Formula: see text] if [Formula: see text] possesses a complete Hall [Formula: see text]-set [Formula: see text] such that [Formula: see text] for all [Formula: see text] and all [Formula: see text]. Let [Formula: see text] be a subgroup of [Formula: see text]. [Formula: see text] is: [Formula: see text]-[Formula: see text]-permutable in [Formula: see text] if [Formula: see text] for some modular subgroup [Formula: see text] and [Formula: see text]-permutable subgroup [Formula: see text] of [Formula: see text]; weakly[Formula: see text]-[Formula: see text]-permutable in [Formula: see text] if there are an [Formula: see text]-[Formula: see text]-permutable subgroup [Formula: see text] and a [Formula: see text]-subnormal subgroup [Formula: see text] of [Formula: see text] such that [Formula: see text] and [Formula: see text]. In this paper, we investigate the influence of weakly [Formula: see text]-[Formula: see text]-permutable subgroups on the structure of finite groups.


1969 ◽  
Vol 10 (3-4) ◽  
pp. 359-362
Author(s):  
Nita Bryce

M. Suzuki [3] has proved the following theorem. Let G be a finite group which has an involution t such that C = CG(t) ≅ SL(2, q) and q odd. Then G has an abelian odd order normal subgroup A such that G = CA and C ∩ A = 〈1〉.


2021 ◽  
Vol 58 (2) ◽  
pp. 147-156
Author(s):  
Qingjun Kong ◽  
Xiuyun Guo

We introduce a new subgroup embedding property in a finite group called s∗-semipermutability. Suppose that G is a finite group and H is a subgroup of G. H is said to be s∗-semipermutable in G if there exists a subnormal subgroup K of G such that G = HK and H ∩ K is s-semipermutable in G. We fix in every non-cyclic Sylow subgroup P of G some subgroup D satisfying 1 < |D| < |P | and study the structure of G under the assumption that every subgroup H of P with |H | = |D| is s∗-semipermutable in G. Some recent results are generalized and unified.


1997 ◽  
Vol 40 (2) ◽  
pp. 243-246
Author(s):  
Yanming Wang

A subgroup H is called c-normal in a group G if there exists a normal subgroup N of G such that HN = G and H∩N ≤ HG, where HG =: Core(H) = ∩g∈GHg is the maximal normal subgroup of G which is contained in H. We use a result on primitive groups and the c-normality of maximal subgroups of a finite group G to obtain results about the influence of the set of maximal subgroups on the structure of G.


2008 ◽  
Vol 01 (03) ◽  
pp. 369-382
Author(s):  
Nataliya V. Hutsko ◽  
Vladimir O. Lukyanenko ◽  
Alexander N. Skiba

Let G be a finite group and H a subgroup of G. Then H is said to be S-quasinormal in G if HP = PH for all Sylow subgroups P of G. Let HsG be the subgroup of H generated by all those subgroups of H which are S-quasinormal in G. Then we say that H is nearly S-quasinormal in G if G has an S-quasinormal subgroup T such that HT = G and T ∩ H ≤ HsG. Our main result here is the following theorem. Let [Formula: see text] be a saturated formation containing all supersoluble groups and G a group with a normal subgroup E such that [Formula: see text]. Suppose that every non-cyclic Sylow subgroup P of E has a subgroup D such that 1 < |D| < |P| and all subgroups H of P with order |H| = |D| and every cyclic subgroup of P with order 4 (if |D| = 2 and P is a non-abelian 2-group) having no supersoluble supplement in G are nearly S-quasinormal in G. Then [Formula: see text].


2019 ◽  
Vol 19 (05) ◽  
pp. 2050093 ◽  
Author(s):  
M. Ramadan

Let [Formula: see text] be a finite group and [Formula: see text] a subgroup of [Formula: see text]. We say that [Formula: see text] is an [Formula: see text]-subgroup of [Formula: see text] if [Formula: see text] for all [Formula: see text]. We say that [Formula: see text] is weakly [Formula: see text]-embedded in [Formula: see text] if [Formula: see text] has a normal subgroup [Formula: see text] such that [Formula: see text] and [Formula: see text] for all [Formula: see text] where [Formula: see text] is the normal closure of [Formula: see text] in [Formula: see text]. For each prime [Formula: see text] dividing the order of [Formula: see text] let [Formula: see text] be a Sylow [Formula: see text]-subgroup of [Formula: see text]. We fix a subgroup of [Formula: see text] of order [Formula: see text] with [Formula: see text] and study the structure of [Formula: see text] under the assumption that every subgroup of [Formula: see text] of order [Formula: see text] [Formula: see text] is weakly [Formula: see text]-embedded in [Formula: see text]. Our results improve and generalize several recent results in the literature.


Sign in / Sign up

Export Citation Format

Share Document