proper normal subgroup
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 3)

H-INDEX

2
(FIVE YEARS 0)

Author(s):  
Joy Morris ◽  
Mariapia Moscatiello ◽  
Pablo Spiga

AbstractIn this paper, we are interested in the asymptotic enumeration of Cayley graphs. It has previously been shown that almost every Cayley digraph has the smallest possible automorphism group: that is, it is a digraphical regular representation (DRR). In this paper, we approach the corresponding question for undirected Cayley graphs. The situation is complicated by the fact that there are two infinite families of groups that do not admit any graphical regular representation (GRR). The strategy for digraphs involved analysing separately the cases where the regular group R has a nontrivial proper normal subgroup N with the property that the automorphism group of the digraph fixes each N-coset setwise, and the cases where it does not. In this paper, we deal with undirected graphs in the case where the regular group has such a nontrivial proper normal subgroup.


2021 ◽  
Vol 157 (8) ◽  
pp. 1807-1852
Author(s):  
Matt Clay ◽  
Johanna Mangahas ◽  
Dan Margalit

We construct the first examples of normal subgroups of mapping class groups that are isomorphic to non-free right-angled Artin groups. Our construction also gives normal, non-free right-angled Artin subgroups of other groups, such as braid groups and pure braid groups, as well as many subgroups of the mapping class group, such as the Torelli subgroup. Our work recovers and generalizes the seminal result of Dahmani–Guirardel–Osin, which gives free, purely pseudo-Anosov normal subgroups of mapping class groups. We give two applications of our methods: (1) we produce an explicit proper normal subgroup of the mapping class group that is not contained in any level $m$ congruence subgroup and (2) we produce an explicit example of a pseudo-Anosov mapping class with the property that all of its even powers have free normal closure and its odd powers normally generate the entire mapping class group. The technical theorem at the heart of our work is a new version of the windmill apparatus of Dahmani–Guirardel–Osin, which is tailored to the setting of group actions on the projection complexes of Bestvina–Bromberg–Fujiwara.


Author(s):  
Serge Cantat ◽  
Vincent Guirardel ◽  
Anne Lonjou

Abstract Consider an algebraically closed field ${\textbf{k}}$, and let $\textsf{Cr}_2({\textbf{k}})$ be the Cremona group of all birational transformations of the projective plane over ${\textbf{k}}$. We characterize infinite order elements $g\in \textsf{Cr}_2({\textbf{k}})$ having a power $g^n$, $n\neq 0$, generating a proper normal subgroup of $\textsf{Cr}_2({\textbf{k}})$.


Filomat ◽  
2018 ◽  
Vol 32 (11) ◽  
pp. 4047-4059
Author(s):  
Ali Ashrafi ◽  
Fatemeh Koorepazan-Moftakhar

Suppose G is a finite group and C(G) denotes the set of all conjugacy classes of G. The normal graph of G, N(G), is a finite simple graph such that V(N(G)) = C(G). Two conjugacy classes A and B in C(G) are adjacent if and only if there is a proper normal subgroup N such that A U B ? N. The aim of this paper is to study the normal graph of a finite group G. It is proved, among other things, that the groups with identical character table have isomorphic normal graphs and so this new graph associated to a group has good relationship by its group structure. The normal graphs of some classes of finite groups are also obtained and some open questions are posed.


1991 ◽  
Vol 14 (3) ◽  
pp. 475-480 ◽  
Author(s):  
P. T. Ramachandran

In this paper, it is proved that no nontrivial proper normal subgroup of the group of permutations of a setXcan be the group of homeomorphisms of(X,T)for any topologyTonX.


Author(s):  
Bernhard Amberg ◽  
Silvana Franciosi ◽  
Francesco De Giovanni

AbstractLet G be a group factorized by finitely many pairwise permutable nilpotent subgroups. The aim of this paper is to find conditions under which at least one of the factors is contained in a proper normal subgroup of G.


1988 ◽  
Vol 31 (1) ◽  
pp. 67-69 ◽  
Author(s):  
Alberto Espuelas

We recall the following definition (see [1]):A finite group G is said to be a Frobenius–Wielandt group provided that there exists a proper subgroup H of G and a proper normal subgroup N of H such that H∩Hg≦N if g∈G–H. Then H/N is said to be the complement of (G, H, N) (see [1] for more details and notation).


1969 ◽  
Vol 21 ◽  
pp. 418-429 ◽  
Author(s):  
James C. Beidleman

The theory of generalized Frattini subgroups of a finite group is continued in this paper. Several equivalent conditions are given for a proper normal subgroup H of a finite group G to be a generalized Frattini subgroup of G. One such condition on H is that K is nilpotent for each normal subgroup K of G such that K/H is nilpotent. From this result, it follows that the weakly hyper-central normal subgroups of a finite non-nilpotent group G are generalized Frattini subgroups of G.Let H be a generalized Frattini subgroup of G and let K be a subnormal subgroup of G which properly contains H. Then H is a generalized Frattini subgroup of K.Let ϕ(G) be the Frattini subgroup of G. Suppose that G/ϕ(G) is nonnilpotent, but every proper subgroup of G/ϕ(G) is nilpotent. Then ϕ(G) is the unique maximal generalized Frattini subgroup of G.


Sign in / Sign up

Export Citation Format

Share Document