scholarly journals Engineering multimodal spectrum of Cayley tree fractal meta-resonator supercells for ultrabroadband terahertz light absorption

Nanophotonics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 633-644 ◽  
Author(s):  
Amna Zubair ◽  
Muhammad Zubair ◽  
Aaron Danner ◽  
Muhammad Qasim Mehmood

AbstractSelf-similar fractals provide a degree of freedom for varying the resonance frequency due to the multiscale geometric features involved and are an ideal candidate for ultrabroadband absorbing devices – especially in the terahertz (THz) band where there is a lack of natural absorbing materials. Metasurface-based THz absorbers often suffer from poor broadband performance, whereas strongly absorbing broadband devices are typically complex multilayer structures. Here, we numerically demonstrate an ultrabroadband, ultrathin, polarization-insensitive, wide-angle, single-layer planar metasurface THz absorber by integrating different Cayley tree fractal resonators into one supercell based on the frequency shifting and multiresonance bands of different fractal orders. In terms of physics, we have exploited the self-similar nature of fractal geometry to engineer the multimodal spectrum of this system. With increasing fractal order N, an increasing number of modes can be excited with certain degeneracies where each mode corresponds to plasmon oscillations at different geometric scales inside fractal. As a result, broad, multipeaked spectra with large degeneracy numbers can be achieved with larger N. Finally, by placing fractals of different order N into one supercell, the coupling and superposition of the neighboring resonances exhibit the desired ultrabroadband response. The proposed absorber provides a wide incident wave angle with a full-width half-maximum absorption bandwidth of more than one octave, i.e. 3.88 THz. Greater than 80% absorption is achieved over a frequency range of 3 THz. Owing to its performance, this work is a step forward in realizing perfect blackbody absorbers that can be easily integrated with bolometric sensing technology to make high-efficient THz-sensing devices.

2021 ◽  
Vol 33 (5) ◽  
pp. 055102
Author(s):  
Saurabh S. Patwardhan ◽  
O. N. Ramesh

2021 ◽  
Author(s):  
Muhammad Fahim Zafar ◽  
Usman Masud

Abstract Developing a highly efficient and multiple-bands metamaterial absorber is a hot issue in recent era. In this paper, A multiple-bands metamaterial absorber has been presented which is based in X, Ku and K-band. Firstly, we have designed two single layer basic unit cell of X-shape and cross-shape, then they are arranged in the multi-layers structure form for the purpose of obtaining multiple- bands and wide band absorption. The proposed absorber is able to work in multiple bands because it has six peaks in the frequency range of 8–24 GHz with having near perfect absorption. Moreover, the sixth peak has a wideband absorption which is 2.93 GHz. Furthermore, the proposed absorber is also tested for polarization insensitivity and also for oblique incidence. Absorption was found polarization insensitive with almost perfect absorption.


1968 ◽  
Vol 32 (2) ◽  
pp. 209-223 ◽  
Author(s):  
I. R. Wood

In this paper a reservoir connected through a horizontal contraction to a channel is considered. Both the reservoir and the channel are considered to contain a stable multi-layered system of fluids. The conditions under which there is a flow in only one layer, and the depth in this flowing layer decreases continuously from its depth in the reservoir to its depth in the channel, give the maximum discharge that can be obtained with a flow only from this single layer. For this case the volume discharge calculations are carried out at a single section (the section of minimum width). Where there are velocities in only two layers and the depth in each of these layers decreases continuously from their depths in the reservoir to their depths in the channel, the theory involves computations at two sections in the flow. These are the section of minimum width and a section upstream of the position of minimum width (the virtual point of control). For this flow it is shown that the solution is the one in which the velocity and density distributions are self similar and that the depths of the layers at the point of maximum contraction are two-thirds of those far upstream. It is then shown that for any stable continuous or discrete density stratification in the reservoir a self similar solution will satisfy the conditions for the depths of the flowing layers to decrease smoothly from the reservoir to downstream of the contraction. Again the ratio of the depth at the contraction to that far upstream is two-thirds.When there is a very large density difference between the fluid in the lower dead water and that in the lowest flowing streamline then this streamline becomes horizontal and may be considered as a frictionless bed. The flow when the bed is not horizontal but where there is a small rise in the channel at the position of maximum contraction is considered for the case where two discrete layers flow under a volume of dead water. In this case the velocity and density profiles are not self similar.Experiments have been carried out with a contraction in a flume for the withdrawal of two discrete layers from a three layer system and the withdrawal from a fluid with a linear density gradient. In both cases the reservoir and channel bed and hence the lowest streamline was effectively horizontal. These experiments confirmed the theoretical predictions.


2020 ◽  
Vol 35 (10) ◽  
pp. 1183-1191
Author(s):  
Abdulrahman Alhomrani ◽  
Ali Yahyaoui ◽  
Anas Al Hashmi ◽  
Ameni Mersani ◽  
Majed Nour ◽  
...  

In this paper, we present the design of a spiral nano-antenna dedicated to infrared energy harvesting at 28.3 THz. A comprehensive, detailed parametric study of key parameters such as the initial angle at the origin arm, width of the spiral arms, gap between the two arms, thickness of substrate, length of substrate, thickness of patch and number of turns of the nano-antenna is also presented and discussed in order to harvest maximum electric field in the gap of the spiral antenna in the frequency range of 28 – 29 THz. The maximum electric field is simulated at 28.1, 28.3, 28.5 and 28.7 THz. A variation of the electric field of the antenna for different value of incident wave angle at the resonance frequency 28.3 THz has been simulated. The main advantages of the studied structure are its ability to reach high confined electric field within its gap, its wideband behavior around the operating frequency 28.3 THz, and its insensitivity to polarization of incident electromagnetic waves.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6885
Author(s):  
Qian Li ◽  
Junjie Tu ◽  
Yang Tian ◽  
Yanli Zhao

Two types of configurations are theoretically proposed to achieve high responsivity polarization-insensitive waveguide Schottky photodetectors, i.e., a dual-layer structure for 1.55 µm and a single-layer structure for 2 µm wavelength band. Mode hybridization effects between quasi-TM modes and sab1 modes in plasmonic waveguides are first presented and further investigated under diverse metal types with different thicknesses in this work. By utilizing the mode hybridization effects between quasi-TE mode and aab0 mode, and also quasi-TM and sab1 mode in our proposed hybrid plasmonic waveguide, light absorption enhancement can be achieved under both TE and TM incidence within ultrathin and short metal stripes, thus resulting in a considerable responsivity for Si-based sub-bandgap photodetection. For 1.55 µm wavelength, the Au-6 nm-thick device can achieve absorptance of 99.6%/87.6% and responsivity of 138 mA·W−1/121.2 mA·W−1 under TE/TM incidence. Meanwhile, the Au-5 nm-thick device can achieve absorptance of 98.4%/90.2% and responsivity of 89 mA·W−1/81.7 mA·W−1 under TE/TM incidence in 2 µm wavelength band. The ultra-compact polarization-insensitive waveguide Schottky photodetectors may have promising applications in large scale all-Si photonic integrated circuits for high-speed optical communication.


Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 784 ◽  
Author(s):  
Phuc Toan Dang ◽  
Tuan V. Vu ◽  
Jongyoon Kim ◽  
Jimin Park ◽  
Van-Chuc Nguyen ◽  
...  

We present a design of an ultra-broadband metamaterial absorber in the visible and near- infrared regions. The unit cell structure consists of a single layer of metallic truncated-pyramid resonator-dielectric-metal configuration, which results in a high absorption over a broad wavelength range. The absorber exhibits 98% absorption at normal incidence spanning a wideband range of 417–1091 nm, with >99% absorption within 822–1054 nm. The broadband absorption stability maintains 95% at large incident angles up to 40° for the transverse electric (TE)-mode and 20° for the transverse magnetic (TM)-mode. Furthermore, the polarization-insensitive broadband absorption is presented in this paper by analyzing absorption performance with various polarization angles. The proposed absorber can be applied for applications such as solar cells, infrared detection, and communication systems thanks to the convenient and compatible bandwidth for electronic THz sources.


Author(s):  
Braian Nathan De Oliveira Andrade ◽  
William Orivaldo Carvalho ◽  
Felipe Beltran Mejia ◽  
Jorge Ricardo Mejiasalazar

Sign in / Sign up

Export Citation Format

Share Document