Soot Formation and Its Effect in an Aero Gas Turbine Combustor

2019 ◽  
Vol 36 (1) ◽  
pp. 61-73 ◽  
Author(s):  
R. K. Mishra ◽  
Sunil Chandel

Abstract Soot formation and the effect of soot deposit on the performance and integrity on an aero gas turbine combustor has been studied. Defective atomizer or blockage of air passages creates a fuel rich mixture which promotes soot formation in combustor primary zone. The temperature field and soot concentration inside the liner has been analyzed at high equivalence ratio using computational model in CFX. The peak temperature in primary zone increases till equivalence ratio reaches ϕ=1.1. But at high equivalence ratio, i. e., ϕ≥1.2, the peak temperature in primary zone decreases and that in dilution zone increases. Soot concentration increases at liner front end as well as in dilution zone when equivalence ratio increases from 1.25 to 3.0. Erosion and distortion of atomizer flow passages cause higher spray cone angle which again increases the soot concentration. Soot deposit inside liner has detrimental effect on the life and performance of the combustor as well as of the aero engine.

Author(s):  
G. E. Andrews ◽  
M. N. Kim

An experimental investigation was undertaken of the influence on emissions of full coverage discrete hole film cooling of a lean low NOx radial swirler natural gas combustor. The combustor used radial swirler vane passage fuel injection on the centre of the vane passage inlet. The test configuration was similar to that used in the Alstom Power Tornado and related family of low NOx gas turbines. The test conditions were simulated at atmospheric pressure at the flow condition of lean low NOx gas turbine primary zones. The tests were carried out at an isothermal flow Mach number of 0.03, which represents 60% of industrial gas turbine combustor airflow through the swirl primary zone. The effusion film cooling used was Rolls-Royce Transply, which has efficient internal cooling of the wall as well as full coverage discrete hole film cooling. Film cooling levels of 0, 16 and 40% of the primary zone airflow were investigated for a fixed total primary zone air flow and reference Mach number of 0.03. The results showed that there was a major increase in the NOx emissions for 740K inlet temperature and 0.45 overall equivalence ratio from 6ppm at zero film cooling air flow to 32ppm at 40% coolant flow rate. CO emissions increased from 25ppm to 75ppm for the same increase in film cooling flow rate. It was shown that the main effect was the creation of a richer inner swirler combustion with a surrounding film cooling flow that did not mix well with the central swirling combustion. The increase in NOx and CO could be predicted on the basis of the central swirl flow equivalence ratio.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kirubakaran V. ◽  
Naren Shankar R.

Purpose This paper aims to predict the effect of combustor inlet area ratio (CIAR) on the lean blowout limit (LBO) of a swirl stabilized can-type micro gas turbine combustor having a thermal capacity of 3 kW. Design/methodology/approach The blowout limits of the combustor were predicted predominantly from numerical simulations by using the average exit gas temperature (AEGT) method. In this method, the blowout limit is determined from characteristics of the average exit gas temperature of the combustion products for varying equivalence. The CIAR value considered in this study ranges from 0.2 to 0.4 and combustor inlet velocities range from 1.70 to 6.80 m/s. Findings The LBO equivalence ratio decreases gradually with an increase in inlet velocity. On the other hand, the LBO equivalence ratio decreases significantly especially at low inlet velocities with a decrease in CIAR. These results were backed by experimental results for a case of CIAR equal to 0.2. Practical implications Gas turbine combustors are vulnerable to operate on lean equivalence ratios at cruise flight to avoid high thermal stresses. A flame blowout is the main issue faced in lean operations. Based on literature and studies, the combustor lean blowout performance significantly depends on the primary zone mass flow rate. By incorporating variable area snout in the combustor will alter the primary zone mass flow rates by which the combustor will experience extended lean blowout limit characteristics. Originality/value This is a first effort to predict the lean blowout performance on the variation of combustor inlet area ratio on gas turbine combustor. This would help to extend the flame stability region for the gas turbine combustor.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Saroj Kumar Muduli ◽  
R. K. Mishra ◽  
Purna Chandra Mishra

Abstract This paper presents the computational study carried out on an aero gas turbine combustor to assess important performance parameters. The CFD results are compared with experimental dataobtained from the full scale combustor tested at ground test stand simulating various operational conditions. The CFD predictions have agreed very well with the experimental data. The model is then extended to predict combustor exit temperature pattern factors, pressure loss, and combustion efficiency and exhaust gas constituents over a wide range of operating pressure and temperature conditions. The paper also presents the studies carried out on the effect of atomizer spray cone angle, particle size and fuel flow variations expected due to manufacturing tolerances in various flow passages as well as due to operational degradations on temperature pattern factors. The pattern factors are also analyzed on cold and hot day environment. The radial pattern factor (RPF) at mid height is found to increase as altitude increases from sea level to 12 km. Spray cone angle is found to have a predominant effect on temperature non-uniformity at exit, lower cone angle increasing both radial and circumferential pattern factors. The findings of this study are valuable inputs for engine performance estimation.


Author(s):  
R. V. Cottington ◽  
J. P. D. Hakluytt ◽  
J. R. Tilston

A new primary zone for a gas turbine combustor has been developed which achieves efficient combustion in fuel lean conditions for minimizing carbon formation. This uses a large number of jets in the head of the chamber to generate independent shear layers in a co-operative array. Good combustion performance, wide fuel/air ratio operational range and tolerance to fuel quality have been demonstrated on research rigs. The combustor itself has been developed to an engine standard for a naval gas turbine required to operate with low smoke emission on distillate diesel fuel. The rig programme used to optimise the design is described together with results from engine evaluation. Practical advantages of this type of chamber apply equally to aero applications on kerosene.


Author(s):  
Dieter Bohn ◽  
James F. Willie ◽  
Nils Ohlendorf

Lean gas turbine combustion instability and control is currently a subject of interest for many researchers. The motivation for running gas turbines lean is to reduce NOx emissions. For this reason gas turbine combustors are being design using the Lean Premixed Prevaporized (LPP) concept. In this concept, the liquid fuel must first be atomized, vaporized and thoroughly premixed with the oxidizer before it enters the combustion chamber. One problem that is associated with running gas turbines lean and premixed is that they are prone to combustion instability. The matrix burner test rig at the Institute of Steam and Gas Turbines at the RWTH Aachen University is no exception. This matrix burner is suitable for simulating the conditions prevailing in stationary gas turbines. Till now this burner could handle only gaseous fuel injection. It is important for gas turbines in operation to be able to handle both gaseous and liquid fuels though. This paper reports the modification of this test rig in order for it to be able to handle both gaseous and liquid primary fuels. Many design issues like the number and position of injectors, the spray angle, nozzle type, droplet size distribution, etc. were considered. Starting with the determination of the spray cone angle from measurements, CFD was used in the initial design to determine the optimum position and number of injectors from cold flow simulations. This was followed by hot flow simulations to determine the dynamic behavior of the flame first without any forcing at the air inlet and with forcing at the air inlet. The effect of the forcing on the atomization is determined and discussed.


Author(s):  
Mounir Ibrahim ◽  
Terry Sanders ◽  
Douglas Darling ◽  
Michelle Zaller

To imitate resonances that might occur in the fuel delivery system of gas turbine combustors, the incoming liquid streams of two pressure swirl nozzles were perturbed using a piezoelectric driver. Frequencies of perturbations examined were from 3 to 20 kHz, and water was used as the test fluid. A video camera and a Phase Doppler Particle Analyzer (PDPA) were used to study the effect of perturbations on the mean flow quantities of the sprays. Various lighting arrangements were used for the video photography: back lighting, front lighting, a strobe synchronized with the input to the piezoelectric, and a laser sheet oriented along the midplane of the sprays. The study showed that the piezoelectric drive had an effect an the spray system at discrete frequencies. At these particular frequencies, by increasing the input voltage, it was found that the piezoelectric drive affected the atomization in the following ways: (1) the mean flow rate decreased, (2) the spray cone angle decreased, (3) the break up length decreased, (4) the peak of the spatial distribution of the mean droplet size decreased, and (5) the mean droplet sizes and velocities increased near the spray center line and decreased in the outer region of the spray. A hysteresis effect of the drive frequency on the spray cone angle was observed. The results indicated that more fundamental research is needed to gain an in-depth understanding of the physical processes induced in the spray by the piezoelectric drive.


2021 ◽  
Vol 20 (2) ◽  
pp. 19-35
Author(s):  
N. I. Gurakov ◽  
I. A. Zubrilin ◽  
M. Hernandez Morales ◽  
D. V. Yakushkin ◽  
A. A. Didenko ◽  
...  

The paper presents the results of studying the flow characteristics of liquid fuel in pressure jet atomizers of small-sized gas turbine engines with nozzle diameters of 0.4-0.6 mm for various operating and design parameters. The study was carried out using experimental measurements, semi-empirical correlations and CFD (computational fluid dynamics) methods. The Euler approach, the volume- of- fluid (VOF) method, was used to model multiphase flows in CFD simulations. Good agreement was obtained between experimental and predicted data on the fuel coefficient and the primary spray cone angle at the nozzle outlet. Besides, the assessment of the applicability of semi-empirical techniques for the nozzle configurations under consideration is given. In the future, the flow characteristics in question (the nozzle flow rate, the fuel film thickness, and the primary spray cone angle) can be used to determine the mean diameter of the droplets (SMD) required to fully determine the boundary conditions of fuel injection when modeling combustion processes in combustion chambers of small-sized gas turbine engines.


Author(s):  
C. A. Ferguson ◽  
A. M. Mellor

Measurements have been made of the normal component of the radiative heat flux to the wall of a model gas turbine combustor with and without a mirrored background. Measurements have also been made of the centerline soot concentration. The data show that the heat flux correlated with the soot concentration but not universally, since JET A fuel yielded a different curve 1han DIESEL fuel. A theoretical analysis of the heat flux from a soot suspension was formulated. A criterion was established for the use of a small particle analysis. Finally, it is shown that there is no correspondence between theory and these experiments. It is speculated that turbulent fluctuations need to be modeled.


Sign in / Sign up

Export Citation Format

Share Document