scholarly journals Co-release of acetylcholine and GABA by the starburst amacrine cells

1992 ◽  
Vol 12 (4) ◽  
pp. 1394-1408 ◽  
Author(s):  
DM O'Malley ◽  
JH Sandell ◽  
RH Masland
Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2574
Author(s):  
Rong-Shan Yan ◽  
Xiong-Li Yang ◽  
Yong-Mei Zhong ◽  
Dao-Qi Zhang

Correlated spontaneous activity in the developing retina (termed “retinal waves”) plays an instructive role in refining neural circuits of the visual system. Depolarizing (ON) and hyperpolarizing (OFF) starburst amacrine cells (SACs) initiate and propagate cholinergic retinal waves. Where cholinergic retinal waves stop, SACs are thought to be driven by glutamatergic retinal waves initiated by ON-bipolar cells. However, the properties and function of cholinergic and glutamatergic waves in ON- and OFF-SACs still remain poorly understood. In the present work, we performed whole-cell patch-clamp recordings and Ca2+ imaging from genetically labeled ON- and OFF-SACs in mouse flat-mount retinas. We found that both SAC subtypes exhibited spontaneous rhythmic depolarization during cholinergic and glutamatergic waves. Interestingly, ON-SACs had wave-induced action potentials (APs) in an age-dependent manner, but OFF-SACs did not. Simultaneous Ca2+ imaging and patch-clamp recordings demonstrated that, during a cholinergic wave, APs of an ON-SAC appeared to promote the dendritic release of acetylcholine onto neighboring ON- and OFF-SACs, which enhances their Ca2+ transients. These results advance the understanding of the cellular mechanisms underlying correlated spontaneous activity in the developing retina.


1993 ◽  
Vol 69 (3) ◽  
pp. 730-738 ◽  
Author(s):  
D. M. O'Malley ◽  
R. H. Masland

1. Rabbit retinas were isolated from the eye and incubated in the presence of 3H-choline. Samples of retina taken from a defined midperipheral eccentricity were spread over the domed end of a fiberoptic bundle that formed the floor of a superfusion chamber. The rate of release of labeled acetylcholine by the starburst amacrine cells was studied. 2. When the retina was stimulated by moving gratings, the cells vigorously increased their secretion of acetylcholine. Responses were observed when the bars were as small as 60 microns in width. Systematically varying the spatial and temporal frequency of stimulation revealed that temporal frequency was the dominant variable: the cells responded best to stimuli of 1–4 Hz, whether those stimuli were flashing lights, fine gratings moving slowly, or coarse gratings moving rapidly. 3. With temporal frequency constant, the cells' responses decreased as the spatial frequency of the grating increased. The decreased response to fine gratings is most likely due, at least in part, to lateral interactions that become stronger as the light and dark bars become more closely spaced. These could occur in either the outer or inner retina. 4. The velocity tuning curve for the starburst cells' release of acetylcholine matched fairly well the velocity tuning of ON-OFF directionally selective cells in the rabbit. It did not correspond at all well with the tuning curve for the ON directionally selective cells. If the ON cells receive input from the starburst cells, that input appears to be quite indirect.(ABSTRACT TRUNCATED AT 400 WORDS)


2018 ◽  
Vol 115 (51) ◽  
pp. E12083-E12090 ◽  
Author(s):  
Adam Bleckert ◽  
Chi Zhang ◽  
Maxwell H. Turner ◽  
David Koren ◽  
David M. Berson ◽  
...  

Synaptic inhibition controls a neuron’s output via functionally distinct inputs at two subcellular compartments, the cell body and the dendrites. It is unclear whether the assembly of these distinct inhibitory inputs can be regulated independently by neurotransmission. In the mammalian retina, γ-aminobutyric acid (GABA) release from starburst amacrine cells (SACs) onto the dendrites of on–off direction-selective ganglion cells (ooDSGCs) is essential for directionally selective responses. We found that ooDSGCs also receive GABAergic input on their somata from other amacrine cells (ACs), including ACs containing the vasoactive intestinal peptide (VIP). When net GABAergic transmission is reduced, somatic, but not dendritic, GABAA receptor clusters on the ooDSGC increased in number and size. Correlative fluorescence imaging and serial electron microscopy revealed that these enlarged somatic receptor clusters are localized to synapses. By contrast, selectively blocking vesicular GABA release from either SACs or VIP ACs did not alter dendritic or somatic receptor distributions on the ooDSGCs, showing that neither SAC nor VIP AC GABA release alone is required for the development of inhibitory synapses in ooDSGCs. Furthermore, a reduction in net GABAergic transmission, but not a selective reduction from SACs, increased excitatory drive onto ooDSGCs. This increased excitation may drive a homeostatic increase in ooDSGC somatic GABAA receptors. Differential regulation of GABAA receptors on the ooDSGC’s soma and dendrites could facilitate homeostatic control of the ooDSGC’s output while enabling the assembly of the GABAergic connectivity underlying direction selectivity to be indifferent to altered transmission.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Thomas A Ray ◽  
Suva Roy ◽  
Christopher Kozlowski ◽  
Jingjing Wang ◽  
Jon Cafaro ◽  
...  

A common strategy by which developing neurons locate their synaptic partners is through projections to circuit-specific neuropil sublayers. Once established, sublayers serve as a substrate for selective synapse formation, but how sublayers arise during neurodevelopment remains unknown. Here, we identify the earliest events that initiate formation of the direction-selective circuit in the inner plexiform layer of mouse retina. We demonstrate that radially migrating newborn starburst amacrine cells establish homotypic contacts on arrival at the inner retina. These contacts, mediated by the cell-surface protein MEGF10, trigger neuropil innervation resulting in generation of two sublayers comprising starburst-cell dendrites. This dendritic scaffold then recruits projections from circuit partners. Abolishing MEGF10-mediated contacts profoundly delays and ultimately disrupts sublayer formation, leading to broader direction tuning and weaker direction-selectivity in retinal ganglion cells. Our findings reveal a mechanism by which differentiating neurons transition from migratory to mature morphology, and highlight this mechanism’s importance in forming circuit-specific sublayers.


2005 ◽  
Vol 94 (3) ◽  
pp. 1770-1780 ◽  
Author(s):  
Jerome Petit-Jacques ◽  
Béla Völgyi ◽  
Bernardo Rudy ◽  
Stewart Bloomfield

Using patch-clamp techniques, we investigated the characteristics of the spontaneous oscillatory activity displayed by starburst amacrine cells in the mouse retina. At a holding potential of –70 mV, oscillations appeared as spontaneous, rhythmic inward currents with a frequency of ∼3.5 Hz and an average maximal amplitude of ∼120 pA. Application of TEA, a potassium channel blocker, increased the amplitude of oscillatory currents by >70% but reduced their frequency by ∼17%. The TEA effects did not appear to result from direct actions on starburst cells, but rather a modulation of their synaptic inputs. Oscillatory currents were inhibited by 6-cyano-7-nitroquinoxalene-2,3-dione (CNQX), an antagonist of AMPA/kainate receptors, indicating that they were dependent on a periodic glutamatergic input likely from presynaptic bipolar cells. The oscillations were also inhibited by the calcium channel blockers cadmium and nifedipine, suggesting that the glutamate release was calcium dependent. Application of AP4, an agonist of mGluR6 receptors on on-center bipolar cells, blocked the oscillatory currents in starburst cells. However, application of TEA overcame the AP4 blockade, suggesting that the periodic glutamate release from bipolar cells is intrinsic to the inner plexiform layer in that, under experimental conditions, it can occur independent of photoreceptor input. The GABA receptor antagonists picrotoxin and bicuculline enhanced the amplitude of oscillations in starburst cells prestimulated with TEA. Our results suggest that this enhancement was due to a reduction of a GABAergic feedback inhibition from amacrine cells to bipolar cells and the resultant increased glutamate release. Finally, we found that some ganglion cells and other types of amacrine cell also displayed rhythmic activity, suggesting that oscillatory behavior is expressed by a number of inner retinal neurons.


2011 ◽  
Vol 29 (1) ◽  
pp. 61-71 ◽  
Author(s):  
KEVIN J. FORD ◽  
MARLA B. FELLER

AbstractIn the few weeks prior to the onset of vision, the retina undergoes a dramatic transformation. Neurons migrate into position and target appropriate synaptic partners to assemble the circuits that mediate vision. During this period of development, the retina is not silent but rather assembles and disassembles a series of transient circuits that use distinct mechanisms to generate spontaneous correlated activity called retinal waves. During the first postnatal week, this transient circuit is comprised of reciprocal cholinergic connections between starburst amacrine cells. A few days before the eyes open, these cholinergic connections are eliminated as the glutamatergic circuits involved in processing visual information are formed. Here, we discuss the assembly and disassembly of this transient cholinergic network and the role it plays in various aspects of retinal development.


2016 ◽  
Vol 33 ◽  
Author(s):  
EDWARD V. FAMIGLIETTI

AbstractRecent physiological studies coupled with intracellular staining have subdivided ON directionally selective (DS) ganglion cells of rabbit retina into two types. One exhibits more “transient” and more “brisk” responses (ON DS-t), and the other has more “sustained’ and more “sluggish” responses (ON DS-s), although both represent the same three preferred directions and show preference for low stimulus velocity, as reported in previous studies of ON DS ganglion cells in rabbit retina. ON DS-s cells have the morphology of ganglion cells previously shown to project to the medial terminal nucleus (MTN) of the accessory optic system, and the MTN-projecting, class IVus1 cells have been well-characterized previously in terms of their dendritic morphology, branching pattern, and stratification. ON DS-t ganglion cells have a distinctly different morphology and exhibit heterotypic coupling to amacrine cells, including axon-bearing amacrine cells, with accompanying synchronous firing, while ON DS-s cells are not coupled. The present study shows that ON DS-t cells are morphologically identical to the previously well-characterized, “orphan” class IIb1 ganglion cell, previously regarded as a member of the “brisk-concentric” category of ganglion cells. Its branching pattern, quantitatively analyzed, is similar to that of the morphological counterparts of X and Y cells, and very different from that of the ON DS-s ganglion cell. Close analysis of the dendritic stratification of class IIb1 ganglion cells together with fiducial cells indicates that they differ from that of the ON DS-s cells. In agreement with one of the three previous studies, class IIb1/ON DS-t cells, unlike class IVus1/ON DS-s ganglion cells, in the main do not co-stratify with starburst amacrine cells. As the present study shows, however, portions of their dendrites do deviate from the main substratum, coming within range of starburst boutons. Parsimony favors DS input from starburst amacrine cells both to ON DS-s and to ON DS-t ganglion cells, given the similarity of their DS responses, but further studies will be required to substantiate the origin of the DS responses of ON DS-t cells. Previously reported OFF DS responses in ON DS-t cells, unmasked by pharmacological agents, and mediated by gap junctions with amacrine cells, suggests an unusual trans-sublaminar organization of directional selectivity in the inner plexiform layer, connecting sublamina a and sublamina b.


Sign in / Sign up

Export Citation Format

Share Document