scholarly journals GABA release selectively regulates synapse development at distinct inputs on direction-selective retinal ganglion cells

2018 ◽  
Vol 115 (51) ◽  
pp. E12083-E12090 ◽  
Author(s):  
Adam Bleckert ◽  
Chi Zhang ◽  
Maxwell H. Turner ◽  
David Koren ◽  
David M. Berson ◽  
...  

Synaptic inhibition controls a neuron’s output via functionally distinct inputs at two subcellular compartments, the cell body and the dendrites. It is unclear whether the assembly of these distinct inhibitory inputs can be regulated independently by neurotransmission. In the mammalian retina, γ-aminobutyric acid (GABA) release from starburst amacrine cells (SACs) onto the dendrites of on–off direction-selective ganglion cells (ooDSGCs) is essential for directionally selective responses. We found that ooDSGCs also receive GABAergic input on their somata from other amacrine cells (ACs), including ACs containing the vasoactive intestinal peptide (VIP). When net GABAergic transmission is reduced, somatic, but not dendritic, GABAA receptor clusters on the ooDSGC increased in number and size. Correlative fluorescence imaging and serial electron microscopy revealed that these enlarged somatic receptor clusters are localized to synapses. By contrast, selectively blocking vesicular GABA release from either SACs or VIP ACs did not alter dendritic or somatic receptor distributions on the ooDSGCs, showing that neither SAC nor VIP AC GABA release alone is required for the development of inhibitory synapses in ooDSGCs. Furthermore, a reduction in net GABAergic transmission, but not a selective reduction from SACs, increased excitatory drive onto ooDSGCs. This increased excitation may drive a homeostatic increase in ooDSGC somatic GABAA receptors. Differential regulation of GABAA receptors on the ooDSGC’s soma and dendrites could facilitate homeostatic control of the ooDSGC’s output while enabling the assembly of the GABAergic connectivity underlying direction selectivity to be indifferent to altered transmission.

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Qiang Chen ◽  
Zhe Pei ◽  
David Koren ◽  
Wei Wei

The dendrites of starburst amacrine cells (SACs) in the mammalian retina are preferentially activated by motion in the centrifugal direction, a property that is important for generating direction selectivity in direction selective ganglion cells (DSGCs). A candidate mechanism underlying the centrifugal direction selectivity of SAC dendrites is synaptic inhibition onto SACs. Here we disrupted this inhibition by perturbing distinct sets of GABAergic inputs onto SACs – removing either GABA release or GABA receptors from SACs. We found that lateral inhibition onto Off SACs from non-SAC amacrine cells is required for optimal direction selectivity of the Off pathway. In contrast, lateral inhibition onto On SACs is not necessary for direction selectivity of the On pathway when the moving object is on a homogenous background, but is required when the background is noisy. These results demonstrate that distinct sets of inhibitory mechanisms are recruited to generate direction selectivity under different visual conditions.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Thomas A Ray ◽  
Suva Roy ◽  
Christopher Kozlowski ◽  
Jingjing Wang ◽  
Jon Cafaro ◽  
...  

A common strategy by which developing neurons locate their synaptic partners is through projections to circuit-specific neuropil sublayers. Once established, sublayers serve as a substrate for selective synapse formation, but how sublayers arise during neurodevelopment remains unknown. Here, we identify the earliest events that initiate formation of the direction-selective circuit in the inner plexiform layer of mouse retina. We demonstrate that radially migrating newborn starburst amacrine cells establish homotypic contacts on arrival at the inner retina. These contacts, mediated by the cell-surface protein MEGF10, trigger neuropil innervation resulting in generation of two sublayers comprising starburst-cell dendrites. This dendritic scaffold then recruits projections from circuit partners. Abolishing MEGF10-mediated contacts profoundly delays and ultimately disrupts sublayer formation, leading to broader direction tuning and weaker direction-selectivity in retinal ganglion cells. Our findings reveal a mechanism by which differentiating neurons transition from migratory to mature morphology, and highlight this mechanism’s importance in forming circuit-specific sublayers.


2019 ◽  
Author(s):  
Lea Ankri ◽  
Elishai Ezra-Tsur ◽  
Shir R. Maimon ◽  
Nathali Kaushansky ◽  
Michal Rivlin-Etzion

SummaryA key feature in sensory processing is center-surround receptive field antagonism. Retinal direction-selectivity (DS) relies on asymmetric inhibition from starburst amacrine cells (SAC) to direction selective ganglion cells (DSGC). SAC exhibit antagonistic center-surround, depolarizing to light increments and decrements in their center and surround, respectively, but the role of this property in DS remains elusive. We found that a repetitive stimulation exhausts SAC center and enhances its surround and used it to distinguish center-from surround-mediated responses. Center, but not surround stimulation, induced direction-selective responses in SAC, as predicted by an elementary spatiotemporal model. Nevertheless, both SAC center and surround elicited direction-selective responses in DSGCs, but to opposite directions. Physiological and morphology-based modeling data show that the opposed responses resulted from inverted DSGC’s excitatory-inhibitory temporal balance, indicating that SAC response time rules DS. Our findings reveal antagonistic center-surround mechanisms for DS, and demonstrate how context-dependent center-surround reorganization enables flexible computations.


1997 ◽  
Vol 77 (2) ◽  
pp. 675-689 ◽  
Author(s):  
Christopher A. Kittila ◽  
Stephen C. Massey

Kittila, Christopher A. and Stephen C. Massey. Pharmacology of directionally selective ganglion cells in the rabbit retina. J. Neurophysiol. 77: 675–689, 1997. In this report we describe extracellular recordings made from on and on-off directionally selective (DS) ganglion cells in the rabbit retina during perfusion with agonists and antagonists to acetylcholine (ACh), glutamate, and γ-aminobutyric acid (GABA). Nicotinic ACh agonists strongly excited DS ganglion cell in a dose-dependent manner. Dose-response curves showed a wide range of potencies, with (±)-exo-2-(6-chloro-3pyridinyl)-7-azabicyclo[2.2.1] heptane dihydrochloride (epibatidine) ≫ nicotine > 1,1-dimethyl-4-phenylpiperazinium iodide = carbachol. In addition, the mixed cholinergic agonist carbachol produced a small excitation, mediated by muscarinic receptors, that could be blocked by atropine. The specific nicotinic antagonists hexamethonium bromide (100 μM), dihydro-β-erythroidine (50 μM), mecamylamine (50 μM), and tubocurarine (50 μM) blocked the responses to nicotinic agonists. In addition, nicotinic antagonists reduced the light-driven input to DS ganglion cells by ∼50%. However, attenuated responses were still DS. We deduce that cholinergic input is not required for directional selectivity. These experiments reveal the importance of bipolar cell input mediated by glutamate. N-methyl-d-aspartic acid (NMDA) excited DS ganglion cells, but NMDA antagonists did not abolish directional selectivity. However, a combined cholinergic and NMDA blockade reduced the responses of DS ganglion cells by >90%. This indicates that most of the noncholinergic excitatory input appears to be mediated by NMDA receptors, with a small residual made upb y  α - a m i n o - 3 - h y d r o x y - 5 - m e t h y l - 4 - i s o x a z o l e p r o p i o n i c  a c i d(AMPA)/kainate (KA) receptors. Responses to AMPA and KA were highly variable and often evoked a mixture of excitation and inhibition due to the release of ACh and GABA. Under cholinergic blockade AMPA/KA elicited a strong GABA-mediated inhibition in DS ganglion cells. AMPA/KA antagonists, such as 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(F)quinoxaline dione and GYKI-53655, promoted null responses and abolished directional selectivity due to the blockade of GABA release. We conclude that GABA release, mediated by non-NMDA glutamate receptors, is an essential part of the mechanism of directional selectivity. The source of the GABA is unknown, but may arise from starburst amacrine cells.


2014 ◽  
Vol 112 (8) ◽  
pp. 1950-1962 ◽  
Author(s):  
Minggang Chen ◽  
Seunghoon Lee ◽  
Silvia J. H. Park ◽  
Loren L. Looger ◽  
Z. Jimmy Zhou

Retinal bipolar cells (BCs) transmit visual signals in parallel channels from the outer to the inner retina, where they provide glutamatergic inputs to specific networks of amacrine and ganglion cells. Intricate network computation at BC axon terminals has been proposed as a mechanism for complex network computation, such as direction selectivity, but direct knowledge of the receptive field property and the synaptic connectivity of the axon terminals of various BC types is required in order to understand the role of axonal computation by BCs. The present study tested the essential assumptions of the presynaptic model of direction selectivity at axon terminals of three functionally distinct BC types that ramify in the direction-selective strata of the mouse retina. Results from two-photon Ca2+ imaging, optogenetic stimulation, and dual patch-clamp recording demonstrated that 1) CB5 cells do not receive fast GABAergic synaptic feedback from starburst amacrine cells (SACs); 2) light-evoked and spontaneous Ca2+ responses are well coordinated among various local regions of CB5 axon terminals; 3) CB5 axon terminals are not directionally selective; 4) CB5 cells consist of two novel functional subtypes with distinct receptive field structures; 5) CB7 cells provide direct excitatory synaptic inputs to, but receive no direct GABAergic synaptic feedback from, SACs; and 6) CB7 axon terminals are not directionally selective, either. These findings help to simplify models of direction selectivity by ruling out complex computation at BC terminals. They also show that CB5 comprises two functional subclasses of BCs.


2012 ◽  
Vol 29 (3) ◽  
pp. 157-168 ◽  
Author(s):  
CARLA J. ABBOTT ◽  
KUMIKO A. PERCIVAL ◽  
PAUL R. MARTIN ◽  
ULRIKE GRÜNERT

AbstractRetinal ganglion cells receive excitatory synapses from bipolar cells and inhibitory synapses from amacrine cells. Previous studies in primate suggest that the strength of inhibitory amacrine input is greater to cells in peripheral retina than to foveal (central) cells. A comprehensive study of a large number of ganglion cells at different eccentricities, however, is still lacking. Here, we compared the amacrine and bipolar input to midget and parasol ganglion cells in central and peripheral retina of marmosets (Callithrix jacchus). Ganglion cells were labeled by retrograde filling from the lateral geniculate nucleus or by intracellular injection. Presumed amacrine input was identified with antibodies against gephyrin; presumed bipolar input was identified with antibodies against the GluR4 subunit of the AMPA receptor. In vertical sections, about 40% of gephyrin immunoreactive (IR) puncta were colocalized with GABAA receptor subunits, whereas immunoreactivity for gephyrin and GluR4 was found at distinct sets of puncta. The density of gephyrin IR puncta associated with ganglion cell dendrites was comparable for midget and parasol cells at all eccentricities studied (up to 2 mm or about 16 degrees of visual angle for midget cells and up to 10 mm or >80 degrees of visual angle for parasol cells). In central retina, the densities of gephyrin IR and GluR4 IR puncta associated with the dendrites of midget and parasol cells are comparable, but the average density of GluR4 IR puncta decreased slightly in peripheral parasol cells. These anatomical results indicate that the ratio of amacrine to bipolar input does not account for the distinct functional properties of parasol and midget cells or for functional differences between cells of the same type in central and peripheral retina.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Laura Hanson ◽  
Santhosh Sethuramanujam ◽  
Geoff deRosenroll ◽  
Varsha Jain ◽  
Gautam B Awatramani

In the mammalian retina, direction-selectivity is thought to originate in the dendrites of GABAergic/cholinergic starburst amacrine cells, where it is first observed. However, here we demonstrate that direction selectivity in downstream ganglion cells remains remarkably unaffected when starburst dendrites are rendered non-directional, using a novel strategy combining a conditional GABAA α2 receptor knockout mouse with optogenetics. We show that temporal asymmetries between excitation/inhibition, arising from the differential connectivity patterns of starburst cholinergic and GABAergic synapses to ganglion cells, form the basis for a parallel mechanism generating direction selectivity. We further demonstrate that these distinct mechanisms work in a coordinated way to refine direction selectivity as the stimulus crosses the ganglion cell’s receptive field. Thus, precise spatiotemporal patterns of inhibition and excitation that determine directional responses in ganglion cells are shaped by two ‘core’ mechanisms, both arising from distinct specializations of the starburst network.


2021 ◽  
Vol 14 ◽  
Author(s):  
Tobias Ruff ◽  
Christian Peters ◽  
Akihiro Matsumoto ◽  
Stephan J. Ihle ◽  
Pilar Alcalá Morales ◽  
...  

The mammalian retina extracts a multitude of diverse features from the visual scene such as color, contrast, and direction of motion. These features are transmitted separately to the brain by more than 40 different retinal ganglion cell (RGC) subtypes. However, so far only a few genetic markers exist to fully characterize the different RGC subtypes. Here, we present a novel genetic Flrt3-CreERT2 knock-in mouse that labels a small subpopulation of RGCs. Using single-cell injection of fluorescent dyes in Flrt3 positive RGCs, we distinguished four morphological RGC subtypes. Anterograde tracings using a fluorescent Cre-dependent Adeno-associated virus (AAV) revealed that a subgroup of Flrt3 positive RGCs specifically project to the medial terminal nucleus (MTN), which is part of the accessory optic system (AOS) and is essential in driving reflex eye movements for retinal image stabilization. Functional characterization using ex vivo patch-clamp recordings showed that the MTN-projecting Flrt3 RGCs preferentially respond to downward motion in an ON-fashion. These neurons distribute in a regular pattern and most of them are bistratified at the level of the ON and OFF bands of cholinergic starburst amacrine cells where they express the known ON-OFF direction-selective RGC marker CART. Together, our results indicate that MTN-projecting Flrt3 RGCs represent a new functionally homogeneous AOS projecting direction-selective RGC subpopulation.


2019 ◽  
Author(s):  
Jean de Montigny ◽  
Vidhyasankar Krishnamoorthy ◽  
Fernando Rozenblit ◽  
Tim Gollisch ◽  
Evelyne Sernagor

AbstractWaves of spontaneous activity sweep across the neonatal mouse retinal ganglion cell (RGC) layer, driven by directly interconnected cholinergic starburst amacrine cells (the only known retinal cholinergic cells) from postnatal day (P) 0-10, followed by waves driven by glutamatergic bipolar cells. We found transient clusters of cholinergic RGC-like cells around the optic disc during the period of cholinergic waves. They migrate towards the periphery between P2-9 and then they disappear. Pan-retinal multielectrode array recordings reveal that cholinergic wave origins follow a similar developmental center-to-periphery pattern. Electrical imaging unmasks hotspots of dipole electrical activity occurring in the vicinity of wave origins. We propose that these activity hotspots are sites for wave initiation and are related to the cholinergic cell clusters, reminiscent of activity in transient subplate neurons in the developing cortex, suggesting a universal hyper-excitability mechanism in developing CNS networks during the critical period for brain wiring.


2019 ◽  
Vol 116 (8) ◽  
pp. 3262-3267 ◽  
Author(s):  
Yu-Tien Hsiao ◽  
Wen-Chi Shu ◽  
Pin-Chun Chen ◽  
Hui-Ju Yang ◽  
Hsin-Yo Chen ◽  
...  

Patterned spontaneous activity periodically displays in developing retinas termed retinal waves, essential for visual circuit refinement. In neonatal rodents, retinal waves initiate in starburst amacrine cells (SACs), propagating across retinal ganglion cells (RGCs), further through visual centers. Although these waves are shown temporally synchronized with transiently high PKA activity, the downstream PKA target important for regulating the transmission from SACs remains unidentified. A t-SNARE, synaptosome-associated protein of 25 kDa (SNAP-25/SN25), serves as a PKA substrate, implying a potential role of SN25 in regulating retinal development. Here, we examined whether SN25 in SACs could regulate wave properties and retinogeniculate projection during development. In developing SACs, overexpression of wild-type SN25b, but not the PKA-phosphodeficient mutant (SN25b-T138A), decreased the frequency and spatial correlation of wave-associated calcium transients. Overexpressing SN25b, but not SN25b-T138A, in SACs dampened spontaneous, wave-associated, postsynaptic currents in RGCs and decreased the SAC release upon augmenting the cAMP-PKA signaling. These results suggest that SN25b overexpression may inhibit the strength of transmission from SACs via PKA-mediated phosphorylation at T138. Moreover, knockdown of endogenous SN25b increased the frequency of wave-associated calcium transients, supporting the role of SN25 in restraining wave periodicity. Finally, the eye-specific segregation of retinogeniculate projection was impaired by in vivo overexpression of SN25b, but not SN25b-T138A, in SACs. These results suggest that SN25 in developing SACs dampens the spatiotemporal properties of retinal waves and limits visual circuit refinement by phosphorylation at T138. Therefore, SN25 in SACs plays a profound role in regulating visual circuit refinement.


Sign in / Sign up

Export Citation Format

Share Document