scholarly journals Lagrange problem for fractional ordinary elliptic system via Dubovitskii–Milyutin method

2020 ◽  
Vol 25 (2) ◽  
Author(s):  
Dariusz Idczak ◽  
Stanisław Walczak

In the paper, we investigate a weak maximum principle for Lagrange problem described by a fractional ordinary elliptic system with Dirichlet boundary conditions. The Dubovitskii–Milyutin approach is used to find the necessary conditions. The fractional Laplacian is understood in the sense of Stone–von Neumann operator calculus.

2011 ◽  
Vol 141 (6) ◽  
pp. 1279-1294 ◽  
Author(s):  
Marius Ghergu

We study the elliptic system −Δu = δ(x)−avp in Ω, −Δv = δ(x)−buq in Ω, subject to homogeneous Dirichlet boundary conditions. Here, Ω ⊂ ℝN, N ≥ 1, is a smooth and bounded domain, δ(x) = dist(x, ∂Ω), a, b ≥ 0 and p, q ∈ ℝ satisfy pq > −1. The existence, non-existence and uniqueness of solutions are investigated in terms of a, b, p and q.


2019 ◽  
Vol 22 (08) ◽  
pp. 1950071 ◽  
Author(s):  
Laura Abatangelo ◽  
Veronica Felli ◽  
Benedetta Noris

We consider the eigenvalue problem for the restricted fractional Laplacian in a bounded domain with homogeneous Dirichlet boundary conditions. We introduce the notion of fractional capacity for compact subsets, with the property that the eigenvalues are not affected by the removal of zero fractional capacity sets. Given a simple eigenvalue, we remove from the domain a family of compact sets which are concentrating to a set of zero fractional capacity and we detect the asymptotic expansion of the eigenvalue variation; this expansion depends on the eigenfunction associated to the limit eigenvalue. Finally, we study the case in which the family of compact sets is concentrating to a point.


2016 ◽  
Vol 5 (4) ◽  
Author(s):  
Maryem Trabelsi ◽  
Nihed Trabelsi

AbstractWe consider the existence of singular limit solutions for a nonlinear elliptic system of Liouville type with Dirichlet boundary conditions. We use the nonlinear domain decomposition method.


2006 ◽  
Vol 11 (2) ◽  
pp. 115-121 ◽  
Author(s):  
G. A. Afrouzi ◽  
S. H. Rasouli

The aim of this article is to study the existence of positive weak solution for a quasilinear reaction-diffusion system with Dirichlet boundary conditions,− div(|∇u1|p1−2∇u1) = λu1α11u2α12... unα1n,   x ∈ Ω,− div(|∇u2|p2−2∇u2) = λu1α21u2α22... unα2n,   x ∈ Ω, ... , − div(|∇un|pn−2∇un) = λu1αn1u2αn2... unαnn,   x ∈ Ω,ui = 0,   x ∈ ∂Ω,   i = 1, 2, ..., n,  where λ is a positive parameter, Ω is a bounded domain in RN (N > 1) with smooth boundary ∂Ω. In addition, we assume that 1 < pi < N for i = 1, 2, ..., n. For λ large by applying the method of sub-super solutions the existence of a large positive weak solution is established for the above nonlinear elliptic system.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Eva Llabrés

Abstract We find the most general solution to Chern-Simons AdS3 gravity in Fefferman-Graham gauge. The connections are equivalent to geometries that have a non-trivial curved boundary, characterized by a 2-dimensional vielbein and a spin connection. We define a variational principle for Dirichlet boundary conditions and find the boundary stress tensor in the Chern-Simons formalism. Using this variational principle as the departure point, we show how to treat other choices of boundary conditions in this formalism, such as, including the mixed boundary conditions corresponding to a $$ T\overline{T} $$ T T ¯ -deformation.


2020 ◽  
Vol 10 (1) ◽  
pp. 895-921
Author(s):  
Daniele Cassani ◽  
Luca Vilasi ◽  
Youjun Wang

Abstract In this paper we study a class of one-parameter family of elliptic equations which combines local and nonlocal operators, namely the Laplacian and the fractional Laplacian. We analyze spectral properties, establish the validity of the maximum principle, prove existence, nonexistence, symmetry and regularity results for weak solutions. The asymptotic behavior of weak solutions as the coupling parameter vanishes (which turns the problem into a purely nonlocal one) or goes to infinity (reducing the problem to the classical semilinear Laplace equation) is also investigated.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Adrien Fiorucci ◽  
Romain Ruzziconi

Abstract The gravitational charge algebra of generic asymptotically locally (A)dS spacetimes is derived in n dimensions. The analysis is performed in the Starobinsky/Fefferman-Graham gauge, without assuming any further boundary condition than the minimal falloffs for conformal compactification. In particular, the boundary structure is allowed to fluctuate and plays the role of source yielding some symplectic flux at the boundary. Using the holographic renormalization procedure, the divergences are removed from the symplectic structure, which leads to finite expressions. The charges associated with boundary diffeomorphisms are generically non-vanishing, non-integrable and not conserved, while those associated with boundary Weyl rescalings are non-vanishing only in odd dimensions due to the presence of Weyl anomalies in the dual theory. The charge algebra exhibits a field-dependent 2-cocycle in odd dimensions. When the general framework is restricted to three-dimensional asymptotically AdS spacetimes with Dirichlet boundary conditions, the 2-cocycle reduces to the Brown-Henneaux central extension. The analysis is also specified to leaky boundary conditions in asymptotically locally (A)dS spacetimes that lead to the Λ-BMS asymptotic symmetry group. In the flat limit, the latter contracts into the BMS group in n dimensions.


Sign in / Sign up

Export Citation Format

Share Document