Structural peculiarity and termomechanical properties of polyelectrolyte complexes and metal-containing nanocomposites based on functionalized starch and polyethyleneimine

2019 ◽  
Vol 41 (1) ◽  
pp. 34-40 ◽  
Author(s):  
V.I. Shtompel ◽  
◽  
V.L. Demchenko ◽  
S.I. Sinelnikov ◽  
O.A. Radchenko ◽  
...  
1984 ◽  
Vol 51 (01) ◽  
pp. 061-064 ◽  
Author(s):  
M C Boffa ◽  
B Dreyer ◽  
C Pusineri

SummaryThe effect of negatively-charged polymers, used in some artificial devices, on plasma clotting and kinin systems was studied in vitro using polyelectrolyte complexes.Contact activation was observed as an immediate, transient and surface-dependent phenomenon. After incubation of the plasma with the polymer a small decrease of factor XII activity was noticed, which corresponded to a greater reduction of prekallikrein activity and to a marked kinin release. No significant decrease of factor XII, prekallikrein, HMW kininogen could be detected immunologically. Only the initial contact of the plasma with the polyelectrolyte lead to activation, subsequently the surface became inert.Beside contact activation, factor V activity also decreased in the plasma. The decrease was surface and time-dependent. It was independent of contact factor activation, and appeared to be related to the sulfonated groups of the polymer. If purified factor V was used instead of plasma factor V, inactivation was immediate and not time-dependent suggesting a direct adsorption on the surface. A second incubation of the plasma-contacted polymer with fresh plasma resulted in a further loss of Factor V activity.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 136
Author(s):  
Masahiko Terauchi ◽  
Atsushi Tamura ◽  
Yoshinori Arisaka ◽  
Hiroki Masuda ◽  
Tetsuya Yoda ◽  
...  

Oral tissue regeneration has received growing attention for improving the quality of life of patients. Regeneration of oral tissues such as alveolar bone and widely defected bone has been extensively investigated, including regenerative treatment of oral tissues using therapeutic cells and growth factors. Additionally, small-molecule drugs that promote bone formation have been identified and tested as new regenerative treatment. However, treatments need to progress to realize successful regeneration of oral functions. In this review, we describe recent progress in development of regenerative treatment of oral tissues. In particular, we focus on cyclodextrin (CD)-based pharmaceutics and polyelectrolyte complexation of growth factors to enhance their solubility, stability, and bioactivity. CDs can encapsulate hydrophobic small-molecule drugs into their cavities, resulting in inclusion complexes. The inclusion complexation of osteoinductive small-molecule drugs improves solubility of the drugs in aqueous solutions and increases in vitro osteogenic differentiation efficiency. Additionally, various anionic polymers such as heparin and its mimetic polymers have been developed to improve stability and bioactivity of growth factors. These polymers protect growth factors from deactivation and degradation by complex formation through electrostatic interaction, leading to potentiation of bone formation ability. These approaches using an inclusion complex and polyelectrolyte complexes have great potential in the regeneration of oral tissues.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2074
Author(s):  
Sara Tabandeh ◽  
Cristina Elisabeth Lemus ◽  
Lorraine Leon

Electrostatic interactions, and specifically π-interactions play a significant role in the liquid-liquid phase separation of proteins and formation of membraneless organelles/or biological condensates. Sequence patterning of peptides allows creating protein-like structures and controlling the chemistry and interactions of the mimetic molecules. A library of oppositely charged polypeptides was designed and synthesized to investigate the role of π-interactions on phase separation and secondary structures of polyelectrolyte complexes. Phenylalanine was chosen as the π-containing residue and was used together with lysine or glutamic acid in the design of positively or negatively charged sequences. The effect of charge density and also the substitution of fluorine on the phenylalanine ring, known to disrupt π-interactions, were investigated. Characterization analysis using MALDI-TOF mass spectroscopy, H NMR, and circular dichroism (CD) confirmed the molecular structure and chiral pattern of peptide sequences. Despite an alternating sequence of chirality previously shown to promote liquid-liquid phase separation, complexes appeared as solid precipitates, suggesting strong interactions between the sequence pairs. The secondary structures of sequence pairs showed the formation of hydrogen-bonded structures with a β-sheet signal in FTIR spectroscopy. The presence of fluorine decreased hydrogen bonding due to its inhibitory effect on π-interactions. π-interactions resulted in enhanced stability of complexes against salt, and higher critical salt concentrations for complexes with more π-containing amino acids. Furthermore, UV-vis spectroscopy showed that sequences containing π-interactions and increased charge density encapsulated a small charged molecule with π-bonds with high efficiency. These findings highlight the interplay between ionic, hydrophobic, hydrogen bonding, and π-interactions in polyelectrolyte complex formation and enhance our understanding of phase separation phenomena in protein-like structures.


2020 ◽  
Vol 35 (4) ◽  
pp. 491-515
Author(s):  
Tom Lindström ◽  
Folke Österberg

AbstractThis review deals with the evolution of bio-based packaging and the emergence of various nanotechnologies for primary food packaging. The end-of life issues of packaging is discussed and particularly the environmental problems associated with microplastics in the marine environment, which serve as a vector for the assimilation of persistent organic pollutants in the oceans and are transported into the food chain via marine and wild life. The use of biodegradable polymers has been a primary route to alleviate these environmental problems, but for various reasons the market has not developed at a sufficient pace that would cope with the mentioned environmental issues. Currently, the biodegradable plastics only constitute a small fraction of the fossil-based plastic market. Fossil-based plastics are, however, indispensable for food safety and minimization of food waste, and are not only cheap, but has generally more suitable mechanical and barrier properties compared to biodegradable polymers. More recently, various nanotechnologies such as the use of nanoclays, nanocellulose, layer-by-layer technologies and polyelectrolyte complexes have emerged as viable technologies to make oxygen and water vapor barriers suitable for food packaging. These technological developments are highlighted as well as issues like biodegradation, recycling, legislation issues and safety and toxicity of these nanotechnologies.


2021 ◽  
Vol 330 ◽  
pp. 115548
Author(s):  
Paulo R. Souza ◽  
Bruno H. Vilsinski ◽  
Ariel C. de Oliveira ◽  
Sharise B.R. Berton ◽  
Cátia S. Nunes ◽  
...  

2008 ◽  
Vol 320 (1-2) ◽  
pp. 268-279 ◽  
Author(s):  
Cláudia L. Silva ◽  
Jorge C. Pereira ◽  
Amílcar Ramalho ◽  
Alberto A.C.C. Pais ◽  
João J.S. Sousa

Sign in / Sign up

Export Citation Format

Share Document