A Comparison of Pseudomorphic Bcc Phase Stability in Zr/Nb and Ti/Nb Thin Film Multilayers

2004 ◽  
Vol 19 (3) ◽  
pp. 707-715 ◽  
Author(s):  
G.B. Thompson ◽  
R. Banerjee ◽  
S.A. Dregia ◽  
M.K. Miller ◽  
H.L. Fraser

A series of Nb-rich Zr/Nb and Ti/Nb multilayers were sputter deposited. Upon a reduction in thickness, a pseudomorphic bcc phase was stabilized in the Zr and Ti layers. X-ray and electron diffraction techniques were used to confirm these phase transformations. The change in phase stability was modeled by the competition between volumetric and interfacial components of the total free energy of a unit bilayer representing the multilayer. An outcome of this model is the ability to plot phase stability diagrams for multilayers, referred to as biphase diagrams, as a function of bilayer thickness and volume fraction. A comparison of the phase stability boundary between hcp/bcc and bcc/bcc for these two systems has shown that the bcc Ti’s pseudomorphic phase stabilization is maintained for a much larger layer thickness as compared to Zr. Atom probe compositional profiles of the Ti/Nb multilayers have indicated that the Nb layers interdiffused into the Ti layers thus helping to facilitate the bcc Ti phase stability in the Ti/Nb multilayers.

2020 ◽  
Vol 90 (5) ◽  
pp. 795
Author(s):  
Р.В. Селюков ◽  
В.В. Наумов

Textured Pt films with thickness h=20-80 nm were sputter deposited on oxidized c-Si (100) wafers and annealed in vacuum at 500°C/60 min. The thickness dependencies of the crystalline texture parameters and of the fraction of crystalline phase δ are obtained for as-deposited and annealed films using X-ray diffraction. The determination of δ in textured films is carried out by the new method based on rocking curve analysis. It is found that annealing leads to the texture improvement and to the increasing of δ for all h. The less h, the stronger effects of texture improvement and of δ increasing. These results are explained by the annealing-induced formation of large secondary grains whose volume fraction increases as h decreases. The inhomogeneity of the depth distributions of texture parameters and of δ are investigated for the as-deposited Pt films.


2012 ◽  
Vol 17 ◽  
pp. 165-174 ◽  
Author(s):  
Th. C. Hasapis ◽  
S. N. Girard ◽  
Euripides Hatzikraniotis ◽  
Konstantinos M. Paraskevopoulos ◽  
M. G. Kanatzidis

We Report on the Structural and Vibrational Properties of the X = 0.11 and X = 0.33 Compositions of a New Class of Nanostructured Thermoelectric System (PbTe)1-X(PbSnS2)x by Means of X-Ray Diffraction, Scanning and Transmission Electron Microscopy and Infrared Reflectivity. both Compositions Are Phase Separated, where Pbsns2 Self-Segregates from Pbte to Form Features with Dimensions Ranging from Tens of Micrometers to Tens of Nanometers. Effective Medium Approximation Was Used in Order to Determine the Volume Fraction and the Dielectric Function of the Nanoscale Pbsns2 Embedded in Pbte. by Comparing the Phonon Parameters of the Nanoscale Pbsns2 and Bulk Pbsns2 Single Crystals, we Concluded that Phonon Confinement Effects and Bilayer Thickness Anisotropy within the Pbsns2 Nanostructures Embedded within Pbte Are Responsible for the Observed Variations in the Frequencies of the Shear and the Compression Modes Not Observed in Pure Crystals of Pbsns2.


1996 ◽  
Vol 436 ◽  
Author(s):  
B. M. Clemens ◽  
T. C. Hufnagel ◽  
M. C. Kautzky ◽  
J.-F. Bobo

AbstractWe have used grazing incidence x-ray diffraction to observe the structural evolution during growth of sputter-deposited epitaxial Fe films on Cu(001) and Pt(001). We find that on Cu(001), Fe is fcc up to a thickness of 10–12 monolayers, whereupon bcc Fe is observed in first the Pitsch and then the Bain orientations. The fcc Fe shows some relaxation of the misfit from the Cu, as do the Pitsch orientation bcc, which is in tension, and the Bain orientation bcc, which is in compression. All three Fe variants exist in a 40 monolayer thick film. On Pt(001) the Fe grows as bcc with the Bain orientation. However, a thin (20 å) bcc Fe film is transformed to fcc Fe with cube-on-cube orientation by subsequent deposition of Pt. This behavior is consistent with intermixing of Pt into the Fe layer, which lowers the mismatch and bulk chemical energies of the fcc phase relative to that of the bcc phase.


1992 ◽  
Vol 258 ◽  
Author(s):  
H. Jia ◽  
J. Shinar ◽  
Y. Chen ◽  
D. L. Williamson

ABSTRACTA SAXS and IR study of microvoid distribution and dynamics in a-Si:H deposited by rf sputtering at 200 – 600 W on nominally unheated substrates is described and discussed. The 640 cm-1 band of the 200 W film yielded a total Si-bonded H content CH=21 at. %; the 840 – 890 cm-1 band yielded a dihydride content CH2 3.4 at. %. The SAXS measurements yielded a microvoid volume fraction vf=8.2 vol.%, and tilting SAXS data indicated elongated voids consistent with a columnar microstructure. In the other films, 9<CH<12 at. % and CH2 was negligible, vf was -2 vol. %. Annealing from 250°C to 310°C for 6 hrs resulted basically in no changes of CH and vf. However CH decreased and vf increased significantly after annealing at 350°C and above. The results showed a strong correlation between the IR determined CH and CH2 and the SAXS determined vf.


1995 ◽  
Vol 10 (7) ◽  
pp. 1721-1729 ◽  
Author(s):  
S.P. Rawal ◽  
G.M. Swanson ◽  
W.C. Moshier

Crystalline Nb5Si3/Nb microlaminates were fabricated to a thickness of 20 μm by depositing the materials onto elevated temperature (750 °C) substrates. Modulation wavelengths of the microlaminates were varied (λ = 40 and 200 nm) while holding their silicide volume fraction constant to assess the effect of layer thickness on the composite properties. X-ray and selected area diffraction confirmed that both the metal and silicide layers exhibited a polycrystalline structure in the as-deposited microlaminates. Nanoindentation measurements of both microlaminates indicated that calculated elastic modulus values were similar to the values obtained by the rule-of-mixtures (ROM). Nanohardness values of the microlaminates increased with decreasing wavelength in a manner described by the Hall-Petch relationship. Vickers hardness (Hv) measurements were also found to be a function of the modulation wavelength, decreasing from 7.32 GPa at λ = 40 nm to 3.04 GPa at λ = 200 nm. Even with a Nb volume fraction of 50%, the λ = 40 nm microlaminate and the monolithic Nb5Si3 film exhibited similar Vickers hardness values of 7.5 GPa. These results show the significant role of modulation wavelength on the hardness, compressive strength, and toughness characteristics of a microlaminate composite.


Author(s):  
E. F. Koch ◽  
E. L. Hall ◽  
S. W. Yang

The plane-front solidified eutectic alloys consisting of aligned tantalum monocarbide fibers in a nickel alloy matrix are currently under consideration for future aircraft and gas turbine blades. The MC fibers provide exceptional strength at high temperatures. In these alloys, the Ni matrix is strengthened by the precipitation of the coherent γ' phase (ordered L12 structure, nominally Ni3Al). The mechanical strength of these materials can be sensitively affected by overall alloy composition, and these strength variations can be due to several factors, including changes in solid solution strength of the γ matrix, changes in they γ' size or morphology, changes in the γ-γ' lattice mismatch or interfacial energy, or changes in the MC morphology, volume fraction, thermal stability, and stoichiometry. In order to differentiate between these various mechanisms, it is necessary to determine the partitioning of elemental additions between the γ,γ', and MC phases. This paper describes the results of such a study using energy dispersive X-ray spectroscopy in the analytical electron microscope.


Author(s):  
J. R. Michael ◽  
K. A. Taylor

Although copper is considered an incidental or trace element in many commercial steels, some grades contain up to 1-2 wt.% Cu for precipitation strengthening. Previous electron microscopy and atom-probe/field-ion microscopy (AP/FIM) studies indicate that the precipitation of copper from ferrite proceeds with the formation of Cu-rich bcc zones and the subsequent transformation of these zones to fcc copper particles. However, the similarity between the atomic scattering amplitudes for iron and copper and the small misfit between between Cu-rich particles and the ferrite matrix preclude the detection of small (<5 nm) Cu-rich particles by conventional transmission electron microscopy; such particles have been imaged directly only by FIM. Here results are presented whereby the Cu Kα x-ray signal was used in a dedicated scanning transmission electron microscope (STEM) to image small Cu-rich particles in a steel. The capability to detect these small particles is expected to be helpful in understanding the behavior of copper in steels during thermomechanical processing and heat treatment.


Sign in / Sign up

Export Citation Format

Share Document