P+ implanted 6H-SiC n+-i-p diodes: evidence for a post-implantation-annealing dependent defect activation

2014 ◽  
Vol 1693 ◽  
Author(s):  
R. Nipoti ◽  
M. Puzzanghera ◽  
F. Moscatelli

ABSTRACTTwo n+-i-p 6H-SiC diode families with P+ ion implanted emitter have been processed with all identical steps except the post implantation annealing: 1300°C/20min without C-cap has been compared with 1950°C/10min with C-cap. The analysis of the temperature dependence of the reverse current at low voltage (-100V) in the temperature range 27-290°C shows the dominance of a periphery current which is due to generation centers with number and activation energy dependent on the post implantation annealing process. The analysis of the temperature dependence of the forward current shows two ideality factor n region, one with n = 1.9/2 at low voltage and the other one with 1 < n < 2 without passing through 1 for increasing voltages. For both the diode families the current with n = 1.9/2 is a periphery current due to recombination centers with a thermal activation energy near the 6H-SiC mid gap. In the forward current region of 1 < n < 2, the two diode families show different ideality factor values which could be attributed to a different post implantation annealing defect activation.

2014 ◽  
Vol 778-780 ◽  
pp. 657-660 ◽  
Author(s):  
Ulrike Grossner ◽  
Francesco Moscatelli ◽  
Roberta Nipoti

Two families of Al+implanted vertical p+in diodes that have been processed all by identical steps except the post implantation annealing one have been characterized with current voltage measurements from -100 to +5V at different temperatures. Analysis of the static forward current voltage characteristics shows two different ideality factor regions, which are distinct for each family. The reverse current voltage characteristics reveals corresponding two different activation energies. These are assumed to be correlated to the Z1/2defect for the one case and another one with an activation energy of 0.25eV.


MRS Advances ◽  
2016 ◽  
Vol 1 (54) ◽  
pp. 3637-3642 ◽  
Author(s):  
Roberta Nipoti ◽  
Giovanna Sozzi ◽  
Maurizio Puzzanghera ◽  
Roberto Menozzi

ABSTRACT The temperature dependence of the forward and reverse current voltage characteristics of circular Al+ implanted 4H-SiC p-i-n vertical diodes of various diameters, post implantation annealed at 1950 °C/5 min, have been used to obtain the thermal activation energies of the defects responsible of the generation and the recombination currents, as well as the area and the periphery current component of the current voltage characteristics. The former have values compatible with those of the traps associated to the carbon vacancy defect in 4H-SiC. The hypothesis that only these traps may justify the trend of the current voltage characteristics of the studied diodes has been tested by simulations in a Synopsys Sentaurus TCAD suite.


1992 ◽  
Vol 262 ◽  
Author(s):  
Anatol I. Ivashchenko ◽  
F.Ya. Kopanskaya ◽  
A. I. Solomonov ◽  
V. P. Tarchenko

ABSTRACTThe effect of phosphorous ion implantation and/or rapid thermal treatment on the behaviour of Schottky barrier elect-rophysical characteristics formed on the plane (100) of n-GaP epitaxial layer is discussed. Even though the implantation and post implantation rapid annealing lead to the generation of deep recombination centers in the bulk, the dominant mechanism of current transport across the barrier structure becomes thermo-ionic - like in initial samples. The analysis of the behaviour of forward current-voltage characteristics, steady state capacitance-voltage characteristics and DLTS data allow to conclude that the obtained reduction of forward current after ion im- plactation can be attributed to an increase of effective potenia! barrier height.


1993 ◽  
Vol 16 (1) ◽  
pp. 55-64 ◽  
Author(s):  
N. Georgoulas ◽  
L. Magafas ◽  
A. Thanailakis

In the present work a study of the electrical properties of heterojunctions between rf sputtered amorphous silicon carbide (a-SiC) thin films and n-type crystalline silicon (c-Si) substrates is reported. The current-voltage (I-V) and capacitance-voltage (C-V) characteristics, as well as the temperature dependence of the current of a-SiC/c-Si(n) heterojunctions were measured. The I-V characteristics of a-SiC/ c-Si(n) heterojunctions exhibit poor rectification properties, with a high reverse current, at higher temperatures (T > 250K), whereas good rectification properties are obtained at lower temperatures (T < 250K). It was found that the a-SiC/c-Si(n) heterojunctions are isotype, suggesting that-the conductivity of a-SiC is n-type. The temperature dependence of the current (from 185K to 320K) showed that the majority carriers of c-Si(n) (i.e. electrons) are transported from c-Si(n) to a-SiC mainly by the thermionic emission mechanism, or by the drift-diffusion mechanism. From C-V measurements of a-SiC/c-Si(n) heterojunctions the electron affinity of a-SiC was found to be X1= 4.20 ± 0.04 eV. Finally, the a-SiC/ c-Si(n) isotype heterojunctions are expected to be interesting devices as infrared


1993 ◽  
Vol 297 ◽  
Author(s):  
R.A. Street ◽  
W.B. Jackson ◽  
M. Hack

Metastable defect creation by illumination and by a forward current in p-i-n devices are compared using CPM and reverse current measurements of the defect density. The data show that the same defects are formed by the two mechanisms, but with different spatial profiles. Numerical modelling shows how the spatial profile influences the reverse bias current.


2017 ◽  
Vol 898 ◽  
pp. 679-683
Author(s):  
Cheng Chen ◽  
Jin Liang Hu ◽  
Lang Xiang Zhong ◽  
Bo Zhang

The diffusion behavior of Ce-Al alloy melt at three temperatures of 943K, 953K and 963K was investigated by sliding shear method. The inter-diffusion constants D show Arrhenius-type temperature dependence in the investigated regimes. Compared with the previous results achieved in Ce-Cu melt, liquid Ce-Al displays a much slower diffusion behavior and rather higher activation energy ED, which was caused by the strong interaction between Ce and Al.


2019 ◽  
Vol 85 (5) ◽  
pp. 60-68
Author(s):  
Yuliay Pogorenko ◽  
Anatoliy Omel’chuk ◽  
Roman Pshenichny ◽  
Anton Nagornyi

In the system RbF–PbF2–SnF2 are formed solid solutions of the heterovalent substitution RbxPb0,86‑xSn1,14F4-x (0 < x ≤ 0,2) with structure of β–PbSnF4. At x > 0,2 on the X-ray diffractograms, in addition to the basic structure, additional peaks are recorded that do not correspond to the reflexes of the individual fluorides and can indicate the formation of a mixture of solid solutions of different composition. For single-phase solid solutions, the calculated parameters of the crystal lattice are satisfactorily described by the Vegard rule. The introduction of ions of Rb+ into the initial structure leads to an increase in the parameter a of the elementary cell from 5.967 for x = 0 to 5.970 for x = 0.20. The replacement of a part of leads ions to rubium ions an increase in electrical conductivity compared with β–PbSnF4 and Pb0.86Sn1.14F4. Insignificant substitution (up to 3.0 mol%) of ions Pb2+ at Rb+ at T<500 K per order of magnitude reduces the conductivity of the samples obtained, while the nature of its temperature dependence is similar to the temperature dependence of the conductivity of the sample β-PbSnF4. By replacing 5 mol. % of ions with Pb2+ on Rb+, the fluoride ion conductivity at T> 450 K is higher than the conductivity of the initial sample Pb0,86Sn1,14F4 and at temperatures below 450 K by an order of magnitude smaller. With further increase in the content of RbF the electrical conductivity of the samples increases throughout the temperature range, reaching the maximum values at x≥0.15 (σ573 = 0.34–0.41 S/cm, Ea = 0.16 eV and σ373 = (5.34–8.16)•10-2 S/cm, Ea = 0.48–0.51 eV, respectively). In the general case, the replacement of a part of the ions of Pb2+ with Rb+ to an increase in the electrical conductivity of the samples throughout the temperature range. The activation energy of conductivity with an increase in the content of RbF in the low-temperature region in the general case increases, and at temperatures above 400 K is inversely proportional decreasing. The nature of the dependence of the activation energy on the concentration of the heterovalent substituent and its value indicate that the conductivity of the samples obtained increases with an increase in the vacancies of fluoride ions in the structure of the solid solutions.


Sign in / Sign up

Export Citation Format

Share Document