Synthesis of AlFe Intermetallic Nanoparticles by High-Energy Ball Milling

2015 ◽  
Vol 1766 ◽  
pp. 181-186
Author(s):  
G. Rosas ◽  
J. Chihuaque ◽  
E. Bedolla ◽  
R. Esparza ◽  
R. Pérez

ABSTRACTIn this investigation, the chemical and microstructural characteristics of nanostructured AlFe intermetallic produced by high-energy ball milling have been explored. High purity elemental powders were used as the starting material. The ball milling was carried out at room temperature using a SPEX-8000 mixer/mill. The structure, morphology and compositions of the powders were obtained using X-ray diffraction patterns (XRD), scanning and transmission electron microscopy (STEM). High resolution electron microscopy observations have been used in the nanostructured materials characterization. The structural configurations have been explored through comparisons between experimental HREM images and theoretically simulated images obtained with the multislice method of the dynamical theory of electron diffraction.

2013 ◽  
Vol 745-746 ◽  
pp. 281-285
Author(s):  
Y.B. Yuan ◽  
Rui Xiao Zheng ◽  
Su Jing Ge ◽  
Han Yang ◽  
Chao Li Ma

Al86Ni7Y4.5Co1La1.5 (at.%) alloy powder was produced by argon gas atomization process. After high-energy ball milling, the powder was consolidated and extruded by using vacuum hot press sintering under different process conditions, sintering temperature, extrusion pressure, sintering time, etc.. The microstructure and morphology of the powder and consolidated bulk alloy were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The phase transformation of the powder was investigated by differential scanning calorimetry (DSC). Mechanical properties of the consolidated bulk alloy were examined. The results showed that as the milling time increase, the volume fraction of amorphous materials and the hardness and yield strength of the bulk alloy were obvious improved.


2011 ◽  
Vol 1288 ◽  
Author(s):  
G. Rosas ◽  
J. Chihuaque ◽  
C. Patiño-Carachure ◽  
R. Esparza ◽  
R. Pérez

ABSTRACTWell-crystallized AlN nanorods have been produced by mechanical milling and subsequent annealing treatment of the milling powders (mechanothermal process). High purity AlN powders were used as the starting material. Mechanical milling was carried out in a vibratory SPEX mill for 30 h, using vials and balls of silicon nitride. The annealing treatment was carried out at 1200 ºC for 10 min. The characterization of the samples was performed by X-ray diffractometry and transmission electron microscopy (TEM). TEM observations indicated that the synthesized nanorods consisted of 30 nm in diameter and 100 nm in length. High resolution electron microscopy observations have been used in the structural characterization. AlN nanorods exhibit a well-crystallized structure. The growing direction of the nanorods is close to the [001] direction. The structural configurations have been explored through comparisons between experimental HREM images and theoretically simulated images obtained with the multislice method of the dynamical theory of electron diffraction.


2016 ◽  
Vol 40 ◽  
pp. 174-179 ◽  
Author(s):  
Hua Lin ◽  
Li Zhao Qin ◽  
He Hong ◽  
Qing Li

Nano-sized starch particles were prepared from potato starch via high-energy ball milling, which is a purely physical method. Scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and viscometer were used to analyze the morphology and characteristics of the as-prepared nanoparticles. Spherical particles with an average size of approximately 120 nm were obtained after grinding the samples for 90 min, and the particles were free from any contamination. The particle surface was rough with a plush-like feature, and the adsorption ability was six times higher than that of native starch. Thus, the nano-sized starch particles can be used as a good embedding medium in biomedical and chemical materials.


2013 ◽  
Vol 755 ◽  
pp. 47-52 ◽  
Author(s):  
J.R. Romero-Romero ◽  
J. Luis López-Miranda ◽  
R. Esparza ◽  
M.A. Espinosa-Medina ◽  
G. Rosas

In this study, FeAl2 and Fe2Al5 intermetallic alloys were prepared by conventional casting technique. In order to study their structural stability the alloys were subjected to high-energy ball milling process for 1, 2.5, 5 and 10 h. The structural and chemical characterizations were conducted by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and differential scanning calorimetry. After 10 h of milling, the experimental results indicated a phase transformation from FeAl2-triclinic phase to Fe2Al5-ortorrombic structure. This phase transformation is characterized by a change from low to high symmetry systems.


2003 ◽  
Vol 775 ◽  
Author(s):  
J. Eric Hampsey ◽  
Claudio L. De Castro ◽  
Byron F. McCaughey ◽  
Donghai Wang ◽  
Brian S. Mitchell ◽  
...  

AbstractHighly ordered mesoporous silica particles with sizes in the micron to sub-micron range are of great interest due to their applications as catalysts and filler materials. Currently, mesoporous silica particles are synthesized using large amounts of solvent, which is impractical for large scale-up in industry. This paper reports on a high-energy ball milling process that has been employed to create micron to sub-micron sized mesoporous silica particles starting from a silica xerogel prepared by a surfactant self-assembly sol-gel process. We have studied the effect of parameters such as milling media (e.g., zirconia, stainless steel, and steel centered nylon balls), milling time, the presence of surfactants during milling, particle size, and pore structure. Results from transmission electron microscopy (TEM), scanning electron microscopy (SEM), Xray diffraction (XRD), and nitrogen adsorption demonstrate the feasibility of producing large quantities of mesostructured particles by a simple milling process.


2013 ◽  
Vol 22 ◽  
pp. 140-147
Author(s):  
SHEELA DEVI ◽  
A. K. JHA

Nanocrystalline BaTi 0.095 W 0.05 O 3 has been synthesized by mechanical activation process using high-energy ball milling. The powders milled for (10 hours, 20 hours, 30 hours respectively) were characterized by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). Transmission electron microscopy images showed that in W- substituted barium titanate nanoparticles are formed in the range of 20–50 nm. Crystallite size decreases with increasing milling time in the samples. Detailed Dielectric and ferroelectric properties with different milling times are discussed in detail. Diffusivity of the samples increases with milling time. Piezoelectric properties increase with increase in milling time in the samples.


2015 ◽  
Vol 21 (4) ◽  
pp. 953-960 ◽  
Author(s):  
Guohua Fan ◽  
Lin Geng ◽  
Yicheng Feng ◽  
Xiping Cui ◽  
Xudong Yan

AbstractMicrostructure evolution during the formation of B2–NiAl by high energy ball milling of equiatomic elemental mixtures was studied by X-ray diffractometer, scanning electron microscopy, and transmission electron microscopy (TEM). The crystallite size, lattice defects and ordering of the B2–NiAl were monitored via TEM as function of milling time. The diffusion reaction, Ni+Al→NiAl3 or/and Ni2Al3, occurred during high energy ball milling, and to a certain extent offered the stored energy for the explosive exothermic reaction, Ni+Al→B2–NiAl. The fine microstructure of newly formed B2–NiAl after 5 h milling involved high density defects, e.g. antiphase boundary, long range ordering domains, vacancies, and dislocations.


Sign in / Sign up

Export Citation Format

Share Document