Ion Association in Polymer Electrolytes; A Raman Study of Poly (Propylene Oxide) Based Complexes

1988 ◽  
Vol 135 ◽  
Author(s):  
M. Kakihana ◽  
S. Schantz ◽  
L.M. Torell ◽  
L. Borjesson

AbstractRaman spectra of a series of PPO-LiClO4 and PPO-NaCF3SO3 complexes have been obtained for different temperatures and salt concentrations to study the various ion associations of the dopant salt. It was found that ion-ion interactions dramatically influenced the internal symmetric stretching modes ν1 of the anions. Splitting of ν1 into a multicomponent band was observed. The intensity profile of the band was found to change rapidly with salt concentration and temperature. A three component band analysis led to the identification of dissociated ions, ion pairs and multiple ion aggregates, respectively. Increased ion association with increased temperature and/or salt concentration was observed for both LiCIO4- and NaCF3SO3- complexes. It is likely to initiate the phase separation and salt precipitation observed in many salt-polymer complexes at higher temperatures. Considerably stronger ion-ion interaction was observed in the NaCF3SO3-system than in the LiCIO4-complex, which may explain the lower conductivities reported for PPO-NaCF3SO3 electrolytes. The drastic conductivity drop observed in both systems at higher salt concentrations can however only partly be due to a decreased concentration of “free” ions, the major effect being attributed to decreased ion mobility.

1982 ◽  
Vol 35 (9) ◽  
pp. 1775 ◽  
Author(s):  
DW James ◽  
RE Mayes

Vibrational spectra and 7Li, 13C and 35Cl n.m.r. spectra have been obtained for solutions of LiClO4 in acetone for salt concentrations from 0.05 to 6 M. Infrared spectra give qualitative indications of ion association. Analysis of the Raman band due to C-C stretching in acetone yields solvation numbers for the Li+ ion of the order of 3. Component band analysis of the ClO4- symmetric stretching vibrational band and the various n.m.r. spectra lead to the identification of solvent-separated ion pairs, contact ion pairs and ion aggregates, in addition to free solvated ions. The dependence on salt concentration of all four species has been determined. The association quotient for the association equilibrium (Li+)s(ClO4)- ↔ [Li+(acetone)ClO4-)s was determined to be 1.4 � 0.3 dm3 mol-1.


1990 ◽  
Vol 210 ◽  
Author(s):  
L. M. Torell ◽  
S. Schantz ◽  
P. Jacobson

AbstractIon associations are demonstrated from Raman spectra of the anion symmetric stretch in NaCF3SO3 and LiCF3SO3 containing salt polymer complexes based on PPO and siloxane modified PPO. The observation of increasing amount of ion pairs with increasing molecular weight and temperature can be explained by an entropically driven process. The entropy effect includes contributions from several factors related to transient cross-linking via the cations, conformational entropy of the polymer chains, and free volume dissimilarities between the solvated ions and the macromolecules.


2005 ◽  
Vol 480-481 ◽  
pp. 273-280
Author(s):  
Glaura Goulart Silva ◽  
Patterson Patrício de Souza ◽  
Ana Júlia Silveira Mizher ◽  
Marcos A. Pimenta

Changes in glass transition and ionic association of PPG/LiClO4 samples with increasing salt concentration have been studied using temperature modulated differential scanning calorimetry (TMDSC)and micro Raman spectroscopy, respectively. PPG, of average molar mass of 3000, was used as host for LiClO4 over the range O:Li = 35 – 4. The analysis of the Raman band, obtained at room temperature, associated with the ν1 symmetric stretching mode of ClO4 - anions, shows the presence of ionic association (ion pair) for electrolytes with salt concentration higher than O:Li = 8. The glass transition changes in the electrolytes were investigated using the differential of heat capacity with respect to temperature [dCp/dT], obtained from TMDSC. The analysis of the dCp/dT signal, by fitting with Gaussian curves, showed that there is a glass transition splitting in samples with concentrations higher than O:Li = 16, which indicates the presence of nanoheterogeneities in these amorphous electrolytes. Raman results pemit to affirm that this nanoheterogeneities were associated mainly with solvent separated ion pairs regions of different concentrations, and not with aggregate of ionic species.


1988 ◽  
Vol 135 ◽  
Author(s):  
Mark A. Ratner ◽  
Stephen D. Druger ◽  
A. Nitzan

AbstractSolvent-free polymer electrolytes and polyelectrolytes are usually studied at quite high ionic concentrations, (into the range above 1M). Under these conditions, correlation effects arising from ion-polymer and ion-ion interactions are expected to be important in the mechanism of conductivity. We sketch some specific ionic effects, separating those actittg on the mobility from those effecting carrier concentration. Mobility effects include reduction of the fluidity due to the effective cross-linking by cations, screening of applied fields due to high ionic concentrations, frictional drag due to counterion motion, and in some polymer hosts, lowered local availability of cation solvation sites due to reduction of the number of coordinating basic oxygens. Reduction of the carrier density from its stoichipmetric value can be discussed in terms of a generalized ion-pairing model. Though the concentrations usually studied are so high that Debye-Huckel theory is invalid and the stoichiometric average cation-anion separation is smaller than the Bjerrum length (a situation in which ordinary electrolyte theory considers all ions paired), nevertheless consideration in terms of contact ion pairs, solvent separated ion pairs and mean stoichiometric separation can be used to compute the effective concentration of carriers. Estimates based on an electrostatic continuum, cavity model for the binding energy of a pair describe the reduction of effective carrier number observed in poly (propylene oxide) materials.


2019 ◽  
Vol 32 (1) ◽  
pp. 143-151 ◽  
Author(s):  
Luma Rayane de Lima Nunes ◽  
Paloma Rayane Pinheiro ◽  
Charles Lobo Pinheiro ◽  
Kelly Andressa Peres Lima ◽  
Alek Sandro Dutra

ABSTRACT Salinity is prejudicial to plant development, causing different types of damage to species, or even between genotypes of the same species, with the effects being aggravated when combined with other types of stress, such as heat stress. The aim of this study was to evaluate the tolerance of cowpea genotypes (Vigna unguiculata L. Walp.) to salt stress at different temperatures. Seeds of the Pujante, Epace 10 and Marataoã genotypes were placed on paper rolls (Germitest®) moistened with different salt concentrations of 0.0 (control), 1.5, 3.0, 4.5 and 6.0 dS m-1, and placed in a germination chamber (BOD) at temperatures of 20, 25, 30 and 35°C. The experiment was conducted in a completely randomised design, in a 3 × 4 × 5 scheme of subdivided plots, with four replications per treatment. The variables under analysis were germination percentage, first germination count, shoot and root length, and total seedling dry weight. At temperatures of 30 and 35°C, increases in the salt concentration were more damaging to germination in the Epace 10 and Pujante genotypes, while for the Marataoã genotype, damage occurred at the temperature of 20°C. At 25°C, germination and vigour in the genotypes were higher, with the Pujante genotype proving to be more tolerant to salt stress, whereas Epace 10 and Marataoã were more tolerant to high temperatures. Germination in the cowpea genotypes was more sensitive to salt stress when subjected to heat stress caused by the low temperature of 20°C or high temperature of 35°C.


1966 ◽  
Vol 19 (1) ◽  
pp. 43 ◽  
Author(s):  
WA Millen ◽  
DW Watts

Ion association constants at 30� have been determined for the cis-[Co en, Cl2]+Cl- ion pair in NN-dimethylformamide (DMF), NN-dimethylacetamide (DMA), and at 20.0�, 25.0�, and 30.0� in dimethyl sulphoxide (DMSO), by a spectrophotometric method. Association constants for the cis-[Co en2 Cl2]+Br- and the trans- [Co en2 Cl2]+Cl- ion pairs have also been determined in DMF at 30�.


Sign in / Sign up

Export Citation Format

Share Document