component band
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 1)

H-INDEX

7
(FIVE YEARS 0)

2020 ◽  
Vol 86 (11) ◽  
pp. 3-12
Author(s):  
Kateryna Terebilenko ◽  
Sergii Nedilko ◽  
Olga Petrenko ◽  
Mykola Slobodyanik ◽  
Vitalii Chornii

The conditions of heterovalent substitution in cationic and anionic positions of хK0,5Bi0,5MoO4 – (1-х)BiVO4 system within range of х = 0.1-0.9 with forming of К0,5xBi1-0,5x(MoxV1-x)O4 solid solutions, those possess scheelite-like type structure have been studied. All the samples of series were obtained by solid state technique. It was shown by IR spectroscopy and X-ray diffraction studies that molybdenum and vanadium occupying one crystallographic position with statistical distribution in х = 0.1–0.9 range of substitution. As result a lowering of lattice symmetry from tetragonal to monoclinic take place with increasing of molybdenum content. Charge compensation in system is realized through proportional substitution of bismuth by potassium in (К/Bi)O8 polyhedra. The data on diffuse reflectance indicate that increasing of substitution degree, x, lead to proportional increasing of band gap values from 2.33 to 2.72 eV for the semiconductors obtained. Intrinsic photoluminescence of the samples has been observed at low temperatures but is absent at room temperature. Total intensity of visible luminescence increases with increasing of molybdenum content in К0.5xBi1-0.5x(MoxV1-x)O4 solid solutions. Spectra of photoluminescence consist of wide two-component band with maxima at 620 and 705 nm, respectively. Simultaneous analysis of literature data and dependences of luminescence intensity on molybdenum content allow assumption that short-wavelength component related with centers, those formed on molybdate groups. Long-wavelength component related with vanadate groups. The wide bands at 375 and 410 nm in the photoluminescence excitation spectra were ascribed to absorption transitions in molybdate and vanadate oxyanions, respectively. The solid solutions studied can be used as hosts for luminescent ions or in elaboration of photocatalysts.


2018 ◽  
Vol 620 ◽  
pp. A123 ◽  
Author(s):  
M. Accolla ◽  
G. Pellegrino ◽  
G. A. Baratta ◽  
G. G. Condorelli ◽  
G. Fedoseev ◽  
...  

Context. Multi-year laboratory experiments have demonstrated that frozen icy mixtures containing simple organic and inorganic molecules (such as H2O, N2, CH4, CO, CO2, C2H6, etc.), if exposed to a flux of energetic ions or UV photons, give rise to new more complex molecules at low temperatures (10–50 K). A fraction of the new synthesized molecules is volatile while the remaining fraction is refractory and therefore it is preserved after the warm-up of the substrate to room temperature. Moreover, a part of the refractory material is formed during the annealing to room temperature, when molecules and radicals into the processed ice become mobile and react to form non-volatile molecules. By means of similar mechanisms, complex organic materials may be formed on the icy surfaces of some objects in the outer solar system, such as trans-Neptunian objects, comets and some satellites of the giant planets: in fact the interaction with solar wind and solar flares ions, solar photons and galactic cosmic rays could produce more refractory materials, analogous to those produced in the laboratory. In some cases, the materials thus synthesized may contain functional groups considered relevant to the pre-biotic chemistry in the hypothesis that interplanetary dust particles, comets and meteoroids contributed to seed the early Earth with the building blocks of life. Aims. The aim of this work is to investigate the chemical similarities and differences between some organic residues left over after ion bombardment (200 keV H+) of different ice mixtures followed by subsequent warm up under vacuum to room temperature. Methods. Seven organic residues have been prepared in our laboratory following a procedure involving the proton irradiation of seven different icy mixtures and their warm-up to room temperature. All the organic samples were characterized by FTIR spectroscopy with measurements performed in situ, in the ultra-high vacuum condition preventing any sample degradation. Three of them were selected to be characterized by XPS spectroscopy as well. Results. Among the organic residues presented in this paper, only those containing nitrogen and carbon exhibit the multi-component band centred at 2200 cm−1. This multi-component band presents interest from the astrobiological point of view due to its attribution to nitriles (–C≡N) and isonitriles (–N≡C). Our results demonstrate that this band is present in the IR spectra of organic nitrogen residues regardless the use of oxygen-bearing species in the icy mixture. This finding is of interest since the 2200 cm−1 band has been observed in some extraterrestrial samples (micro-meteorites) collected in the Antarctica.


Proceedings ◽  
2018 ◽  
Vol 2 (10) ◽  
pp. 565
Author(s):  
Nguyen Nguyen Vu ◽  
Le Van Trung ◽  
Tran Thi Van

This article presents the methodology for developing a statistical model for monitoring salinity intrusion in the Mekong Delta based on the integration of satellite imagery and in-situ measurements. We used Landsat-8 Operational Land Imager and Thermal Infrared Sensor (Landsat- 8 OLI and TIRS) satellite data to establish the relationship between the planetary reflectance and the ground measured data in the dry season during 2014. The three spectral bands (blue, green, red) and the principal component band were used to obtain the most suitable models. The selected model showed a good correlation with the exponential function of the principal component band and the ground measured data (R2 > 0.8). Simulation of the salinity distribution along the river shows the intrusion of a 4 g/L salt boundary from the estuary to the inner field of more than 50 km. The developed model will be an active contribution, providing managers with adaptation and response solutions suitable for intrusion in the estuary as well as the inner field of the Mekong Delta.


2013 ◽  
Vol 12 (1) ◽  
pp. 160 ◽  
Author(s):  
Lindsay A Parish ◽  
Deborah W Mai ◽  
Matthew L Jones ◽  
Erika L Kitson ◽  
Julian C Rayner

2007 ◽  
Vol 131-133 ◽  
pp. 59-64
Author(s):  
Lyudmila I. Khirunenko ◽  
Yu.V. Pomozov ◽  
Mikhail G. Sosnin ◽  
A.V. Duvanskii ◽  
Vitor J.B. Torres ◽  
...  

The interstitial carbon impurity (CI) vibrational modes in monocrystalline Si-rich SiGe were investigated by Fourier Transform Infra Red spectroscopy and density functional modelling. The two absorption bands of CI are found to be close to those in silicon, but show shifts in opposite directions with increasing Ge content. The transversal mode band at 932 cm-1 shifts slightly to the high frequency side, while the longitudinal mode at 922 cm-1 suffers a pronounced red-shift. Each Ci-related band is found to consist of two components. An annealing of CI in Si1-xGex occures in two stage. During the first stage (210-250 K) the main components of bands anneals and revealed components grow in intensity. At T>250 K all components disappear. Two component structure of bands is suppose most likely correspond to different combinations of Si and Ge atoms in the neighbourhood of the carbon atom. The interstitial carbon defect was modelled by a supercell density-functional pseudopotential method (AIMPRO) for alloys with 4.69% Ge concentration. From energetics, it has been found that each Ge-C bond costs at least 0.4 eV in excess of a Si-C bond. However, structures where Ge atoms are second neighbors to the C atom are marginally bound, and may explain the two-component band structure in the absorption measurements. The vibrational mode frequencies taken from several randomly generated SiGe cells produce the observed opposite shifts for the transverse and longitudinal modes.


Author(s):  
Georges Guiochon ◽  
Dean G. Shirazi ◽  
Attila Felinger ◽  
Anita M. Katti

Clay Minerals ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 429-438 ◽  
Author(s):  
M. A. Karakassides ◽  
D. Gournis ◽  
D. Petridis

AbstractInfrared reflectance spectra of Li-, Na-, K-, Rb- and Cs-saturated samples of montmorillonite Zenith-N (Milos, Greece) have been measured in the 400–1300 cm-1 region in an attempt to elucidate the behaviour and migration properties of alkali cations after heating the montmorillonites at 300°C for 24 h. Deconvolution of the complex Si–O stretching band reveals that the component band that arises from the asymmetric stretching vibrations of the silicon-apical oxygen units exhibits the biggest change upon heating the montmorillonites. The normalized absorption area of this band has been correlated with the decrease in the layer charge due to the cation migration. Analysis of the IR data for each alkali-saturated montmorillonite has shown that only Li+ migrates near, or to, vacant octahedral sites.


1988 ◽  
Vol 66 (8) ◽  
pp. 1912-1918 ◽  
Author(s):  
Jesse B. Ng ◽  
B. Petelenz ◽  
H. F. Shurvell

The carbonyl stretching region of fully deuterated acetic acid CD3COOD in D2O has been studied by means of Raman spectroscopy. The number of linearly independent spectral components was determined to be four by factor analysis. Fourier self-deconvolution of the spectra revealed another major component band which was assigned to an overtone and/or combination vibration of the acid monomer. The overall band envelope was fitted with five Gauss–Lorentz functions using a non-linear least squares procedure. The abnormally high intensity of the band assigned to the overtone/combination is discussed in terms of Fermi resonance.


1988 ◽  
Vol 135 ◽  
Author(s):  
M. Kakihana ◽  
S. Schantz ◽  
L.M. Torell ◽  
L. Borjesson

AbstractRaman spectra of a series of PPO-LiClO4 and PPO-NaCF3SO3 complexes have been obtained for different temperatures and salt concentrations to study the various ion associations of the dopant salt. It was found that ion-ion interactions dramatically influenced the internal symmetric stretching modes ν1 of the anions. Splitting of ν1 into a multicomponent band was observed. The intensity profile of the band was found to change rapidly with salt concentration and temperature. A three component band analysis led to the identification of dissociated ions, ion pairs and multiple ion aggregates, respectively. Increased ion association with increased temperature and/or salt concentration was observed for both LiCIO4- and NaCF3SO3- complexes. It is likely to initiate the phase separation and salt precipitation observed in many salt-polymer complexes at higher temperatures. Considerably stronger ion-ion interaction was observed in the NaCF3SO3-system than in the LiCIO4-complex, which may explain the lower conductivities reported for PPO-NaCF3SO3 electrolytes. The drastic conductivity drop observed in both systems at higher salt concentrations can however only partly be due to a decreased concentration of “free” ions, the major effect being attributed to decreased ion mobility.


Sign in / Sign up

Export Citation Format

Share Document