Growth of (110) Oriented YBa2Cu3O7−δ Films by Laser Ablation

1992 ◽  
Vol 285 ◽  
Author(s):  
Neng Y. Chen ◽  
G. Rietveld ◽  
L.W. Lander ◽  
V.C. Matijasevic ◽  
P. Hadley ◽  
...  

ABSTRACTSeveral attempts have been made by different groups to grow (110) YBa2Cu3O7−δ thin films on (110) substrates. In most of the cases, both (103) and (110) orientations of YBa2Cu3O7−δ have been found in the film. The substrate temperature during deposition is one of the major factors that determines the crystal orientation of the YBa2Cu3O7−δ. In our experiment, effort is made to examine the influence of the initial substrate temperature from 595 °C to 660 °C on the relative amount of (110) and (103) oriented grains. The orientations are determined by x-ray analysis with a Weissenberg camera. The amount of (103) oriented YBa2Cu3O7−δ is reduced systematically with decreasing substrate temperature. At the lowest deposition temperatures we find only (110) oriented growth.

1995 ◽  
Vol 397 ◽  
Author(s):  
M. Ambrico ◽  
R. Martino ◽  
D. Smaldone ◽  
V. Capozzi ◽  
G. Lorusso ◽  
...  

ABSTRACTLaser ablation technique has been successfully used for the deposition of CdSe and CdTe/CdSe multilayers on Si(100) and Si(l11) substrates. X-ray analysis showed that CdSe/Si films were highly oriented. Their orientation changed from (100) to (002) by varying the substrate temperature from 473 to 673K. High orientation was also obtained on multilayered polycrystalline structures of CdSe and CdTe on Si(lll). Photoluminescence experiments have also been carried out on the deposited films.


2000 ◽  
Vol 14 (14) ◽  
pp. 523-530 ◽  
Author(s):  
HONG-HAI WANG

Highly oriented AlN thin films have been deposited on (100) and (111) Si wafers by reactive laser ablation with nitrogen discharge at low substrate temperature. The composition and microstructure of films strongly depend on deposition parameters. X-ray photoelectron spectra showed that nitrogen discharge is of great importance to the composition of the films. The effect of substrate temperature on the preferred orientation of films has been investigated carefully by means of X-ray diffraction. Under optimizing deposition parameters — 1.0 J/cm 2 laser fluence, 5 Hz pulse frequency, 100 mTorr nitrogen pressure, 650 V discharge voltage and 200°C substrate temperature — the AlN films deposited on silicon substrates were smooth, dense and stoichiometric with very good preferred orientation. The orientation relationships between films and substrates were AlN(100)//Si(100) and AlN(110)//Si(111). The average refractive index was found to be 2.05 with the usage of an ellipsometer. The films had a band gap of 6.2 eV as measured by UV–visible absorption. The IR spectrum had an absorption characteristic of AlN. Examination of electric properties of films that was carried out on the metal–insulator–semiconductor structure of Au/AlN/Si showed that the dielectric constant, resistivity and breakdown field were 8.3, 2 × 1013 Ω· cm and 3 × 106 V/cm , respectively.


2015 ◽  
Vol 833 ◽  
pp. 127-133
Author(s):  
Jie Yu ◽  
Jie Xing ◽  
Xiu Hua Chen ◽  
Wen Hui Ma ◽  
Rui Li ◽  
...  

La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) electrolyte thin films were fabricated on La0.7Sr0.3Cr0.5Mn0.5O2.75 (LSCM) porous anode substrates by Radio Frequency (RF) magnetron sputtering method. The compatibility between LSGM and LSCM was examined. Microstructures of LSGM thin films fabricated were observed by scanning electron microscope (SEM). The effect of substrate temperature on LSGM thin films was clarified by X-ray Diffraction (XRD). Deposition rate increases firstly at the range of 50°C~150°C, and then decreases at the range of 150°C ~300°C. After annealing, perovskite structure with the same growth orientation forms at different substrate temperature. Crystallite size decreases at first, to the minimum point at 150°C, then increases as substrate temperature rises.


2011 ◽  
Vol 1328 ◽  
Author(s):  
KyoungMoo Lee ◽  
Yoshio Abe ◽  
Midori Kawamura ◽  
Hidenobu Itoh

ABSTRACTCobalt hydroxide thin films with a thickness of 100 nm were deposited onto glass, Si and indium tin oxide (ITO)-coated glass substrates by reactively sputtering a Co target in H2O gas. The substrate temperature was varied from -20 to +200°C. The EC performance of the films was investigated in 0.1 M KOH aqueous solution. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy of the samples indicated that Co3O4 films were formed at substrate temperatures above 100°C, and amorphous CoOOH films were deposited in the range from 10 to -20°C. A large change in transmittance of approximately 26% and high EC coloration efficiency of 47 cm2/C were obtained at a wavelength of 600 nm for the CoOOH thin film deposited at -20°C. The good EC performance of the CoOOH films is attributed to the low film density and amorphous structure.


Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 984
Author(s):  
Faisal I. Alresheedi ◽  
James E. Krzanowski

An X-ray diffraction investigation was carried out on nitrogen-containing 304 stainless steel thin films deposited by reactive rf magnetron sputtering over a range of substrate temperature and bias levels. The resulting films contained between ~28 and 32 at.% nitrogen. X-ray analysis was carried out using both the standard Bragg-Brentano method as well as area-detector diffractometry analysis. The extent of the diffraction anomaly ((002) peak shift) was determined using a calculated parameter, denoted RB, which is based on the (111) and (002) peak positions. The normal value for RB for FCC-based structures is 0.75 but increases as the (002) peak is anomalously displaced closer to the (111) peak. In this study, the RB values for the deposited films were found to increase with substrate bias but decrease with substrate temperature (but still always >0.75). Using area detector diffractometry, we were able to measure d111/d002 values for similarly oriented grains within the films, and using these values calculate c/a ratios based on a tetragonal-structure model. These results allowed prediction of the (002)/(200) peak split for tetragonal structures. Despite predicting a reasonably accessible split (~0.6°–2.9°–2θ), no peak splitting observed, negating the tetragonal-structure hypothesis. Based on the effects of film bias/temperature on RB values, a defect-based hypothesis is more viable as an explanation for the diffraction anomaly.


2015 ◽  
Vol 118 (12) ◽  
pp. 125304 ◽  
Author(s):  
J. G. Quiñones-Galván ◽  
Enrique Camps ◽  
E. Campos-González ◽  
A. Hernández-Hernández ◽  
M. A. Santana-Aranda ◽  
...  

1990 ◽  
Vol 200 ◽  
Author(s):  
C. K. Chiang ◽  
L. P. Cook ◽  
P. K. Schenck ◽  
P. S. Brody ◽  
J. M. Benedetto

ABSTRACTLead zirconate-titanate (PZT) thin films were prepared by the laser ablation technique. The PZT (Zr/Ti=53/47) target was irradiated using a focused q-switched Nd:YAG laser (15 ns, 100 mJ at 1.064 μ;m). The as-deposited films were amorphous as indicated by X-ray powder patterns, but crystallized readily with brief annealing above 650°C. The dielectric constant and the resistivity of the crystallized films were studied using a parallel-plate type capacitor structure.


2001 ◽  
Vol 666 ◽  
Author(s):  
Fumiaki Mitsugi ◽  
Tomoaki Ikegami ◽  
Kenji Ebihara ◽  
Jagdish Narayan ◽  
Alexander M. Grishin

ABSTRACTWe prepared colossal magnetoresistive La0.8Sr0.2MnO3 thin films on the MgO, SrTiO3 and LaAlO3 single crystal substrates using KrF excimer pulsed laser ablation technique. The structural and electrical properties of the La0.8Sr0.2MnO3 thin films which were strained by the lattice mismatch are reported. The in-plane lattice mismatch between the La0.8Sr0.2MnO3 and MgO, SrTiO3 and LaAlO3 substrates are -7.8 %, -0.5 % and +2.3 %, respectively. The X-ray diffraction spectra of the films exhibited c-axis orientation. In the case of the La0.8Sr0.2MnO3 / LaAlO3 thin films with thickness over 100 nm, the divided (00l) peaks were observed. The surface morphology and transport property of the strongly stressed La0.8Sr0.2MnO3 / LaAlO3 were different from those of La0.8Sr0.2MnO3 / MgO and La0.8Sr0.2MnO3 / SrTiO3thin films.


Sign in / Sign up

Export Citation Format

Share Document