Point and Extended Defect Interactions in Silicon

1997 ◽  
Vol 469 ◽  
Author(s):  
M. E. Law ◽  
S. K. Earles

ABSTRACTTransient Enhanced Diffusion (TED) is one of the biggest modeling challenges present in predicting scaled technologies. Damage from implantation of dopant ions changes the diffusivities of the dopants and precipitates to form complex extended defects. Developing a quantitative model for the defect behavior during short time, low temperature anneals is a key to explaining TED. The surface can play a defining role in the removal of point defects from the bulk, but there is a lot of controversy over the role and strength of the surface sink for point defects. The controversy will be reviewed, and new experimental results will be presented that investigate the role of the surface on TED.

1996 ◽  
Vol 438 ◽  
Author(s):  
M. E. Law ◽  
K. S. Jones ◽  
S. K. Earles ◽  
A. D. Lilak ◽  
J-W. Xu

AbstractTransient Enhanced Diffusion (TED) is one of the biggest modeling challenges present in predicting scaled technologies. Damage from implantation of dopant ions changes the diffusivities of the dopants and precipitates to form complex extended defects. Developing a quantitative model for the extended defect behavior during short time, low temperature anneals is a key to explaining TED. This paper reviews some of the modeling developments over the last several years, and discusses some of the challenges that remain to be addressed. Two examples of models compared to experimental work are presented and discussed.


1996 ◽  
Vol 439 ◽  
Author(s):  
M. E. Law ◽  
K. S. Jones ◽  
S. K. Earles ◽  
A. D. Lilak ◽  
J- W. Xu

AbstractTransient Enhanced Diffusion (TED) is one of the biggest modeling challenges present in predicting scaled technologies. Damage from implantation of dopant ions changes the diffusivities of the dopants and precipitates to form complex extended defects. Developing a quantitative model for the extended defect behavior during short time, low temperature anneals is a key to explaining TED. This paper reviews some of the modeling developments over the last several years, and discusses some of the challenges that remain to be addressed. Two examples of models compared to experimental work are presented and discussed.


2004 ◽  
Vol 810 ◽  
Author(s):  
A. Halimaoui ◽  
J. M. Hartmann ◽  
C. Laviron ◽  
R. El-Farhane ◽  
F. Laugier

ABSTRACTPreviously published articles have shown that co-implanted fluorine reduces transient enhanced diffusion of boron. However, it is not yet elucidated whether this effect is due to interaction of fluorine with point-defects or boron atoms. In this work, we have used boron redistribution in a shallow Delta-doped Si structures in order to get some insights into the role of fluorine in the boron diffusion. The structures consisted of 3 boron-doped layers separated by 40nm-thick undoped silicon. The samples were given to Ge preamorphization and F co-implant. SIMS depth profiling was used to analyse boron redistribution after annealing. The results we obtained strongly suggest that fluorine is not interacting with point-defects. The reduction in boron TED is most probably due to boron-fluorine interaction.


1999 ◽  
Vol 568 ◽  
Author(s):  
Giovanni Manninoo ◽  
Nicholas E.B. Cowem ◽  
Peter A. Stolk ◽  
Fred Roozeboom ◽  
Hendrik G.A. Huizing ◽  
...  

ABSTRACTThe ripening of ion-beam generated point defects into extended defects has been investigated in detail. The interstitial supersaturation has been extracted from boron marker-layer diffusion after annealing under non-equilibrium defect conditions. We measured a very high initial supersaturation followed by a decrease over many orders of magnitude with a characteristic “plateau” related to the presence of {113} defects. A continuum inverse model has been used to properly describe the ripening of point defects into clusters and their evolution in the presence of a remote sink, e.g. the surface. It evidences that a nonconservative Ostwald ripening process takes place inside the defect band during the annealing and sustains the interstitial supersaturation. The model reveals moreover an oscillatory behaviour of dissociation energies of the nanometer-sized defects which are responsible for the initial high supersaturation. These defects are believed to be {113} precursors.


2005 ◽  
Vol 864 ◽  
Author(s):  
Min Yu ◽  
Xiao Zhang ◽  
Ru Huang ◽  
Xing Zhang ◽  
Yangyuan Wang ◽  
...  

AbstractBehavior of point defects in annealing is investigated a lot in order to suppress the Transient Enhanced Diffusion (TED) of boron as is urged by the development of integrated circuits. Surface annihilation possibility for point defects is very important in determining junction depth in the case of ultra-shallow doping. However the understanding on it is still ambiguous considering the inconsistent results on surface annihilation behavior. In this paper the variation of surface annihilation possibility is studied. The simulation on boron diffusion as well as silicon diffusion is performed. The evolution of Si clusters is simulated. By explaining experimental results with Kinetic Monte Carlo method based simulation, we proposed that surface annihilation possibility varies in different cases.


2002 ◽  
Vol 717 ◽  
Author(s):  
Renata A. Camillo-Castillo ◽  
Kevin. S. Jones ◽  
Mark E. Law ◽  
Leonard M. Rubin

AbstractTransient enhanced diffusion (TED) is a challenge that the semi-conductor industry has been faced with for more than two decades. Numerous investigations have been conducted to better understand the mechanisms that govern this phenomenon, so that scale down can be acheived. {311} type defects and dislocation loops are known interstitial sources that drive TED and dopants such as B utilize these interstitials to diffuse throughout the Si lattice. It has been reported that a two-step anneal on Ge preamorphized Si with ultra-low energy B implants has resulted in shallower junction depths. This study examines whether the pre-anneal step has a measurable effect on the end of range defects. Si wafers were preamorphized with Ge at 10, 12, 15, 20 and 30keV at a dose of 1x1015cm-2 and subsequently implanted with 1x1015cm-2 1keV B. Furnace anneals were performed at 450, 550, 650 and 750°C; the samples were then subjected to a spike RTA at 950°C. The implant damage was analyzed using Quantitative Transmission Electron Microscopy (QTEM). At the low energy Ge preamorphization, little damage is observed. However at the higher energies the microstructure is populated with extended defects. The defects evolve into elongated loops as the preanneal temperature increases. Both the extended defect density and the trapped interstitial concentration peak at a preanneal temperature of 550°C, suggesting that this may be an optimal condition for trapping interstitials.


1997 ◽  
Vol 469 ◽  
Author(s):  
A. H. Gencer ◽  
S. Chakravarthi ◽  
I. Clejan ◽  
S. T. Dunham

Prediction of transient enhanced diffusion (TED) requires modeling of extended defects of many types, such as {311} defects, dislocation loops, boron-interstitial clusters, arsenic precipitates, etc. These extended defects not only form individually, but they also interact with each other through changes in point defect and solute concentrations. We have developed a fundamental model which can account for the behavior of a broad range of extended defects, as well as their interactions with each other. We have successfully applied and parameterized our model to a range of systems and conditions, some of which are presented in this paper.


2010 ◽  
Vol 44 (1) ◽  
pp. 65-72 ◽  
Author(s):  
Andrei A. Shiryaev ◽  
Fabio Masiello ◽  
Jurgen Hartwig ◽  
Igor N. Kupriyanov ◽  
Tamzin A. Lafford ◽  
...  

Natural and synthetic diamonds with various concentrations and types of point and extended defect were investigated using X-ray topography employing allowed (111, 004) and forbidden (222) reflections. On the topographs of the forbidden reflections, weak stress fields from lattice imperfections and extended defects are readily observed. Comparison of the topographs with IR maps of the distribution of point defects suggests that certain types of point defect may increase the structure factors of the forbidden reflections.


1998 ◽  
Vol 532 ◽  
Author(s):  
Alp H. Gencer ◽  
Scott T. Dunham

ABSTRACTAccurate modeling of extended defect kinetics is of primary importance for predictive modeling of transient enhanced diffusion (TED). Our previously developed model accurately accounts for extended defects and can be used predictively for TED. Using some experimental knowledge about the distribution of the extended defect population we can simplify our model. We demonstrate that reducing the number of solution variables by one doesn't affect the predictive capabilities of the model for extended defect kinetics and TED. However, some caution has to be used when applying the same principles to modeling of dopant deactivation.


2012 ◽  
Vol 725 ◽  
pp. 63-66 ◽  
Author(s):  
Vanesa Hortelano ◽  
Oscar Martínez ◽  
Juan Jiménez ◽  
Bu Guo Wang ◽  
S. Swider ◽  
...  

GaN crystals grown in supercritical ammonia by the ammonothermal method were studied by cathodoluminescence (CL), both in image and spectrally resolved modes. The main extended defects and the incorporation of point defects and impurities in different growth sectors were revealed. The influence of the seeds, the role of the growth planes and the changes in the crystal quality during the growth run are discussed.


Sign in / Sign up

Export Citation Format

Share Document