Fabrication of silicon nanowire network in aluminum thin films

2005 ◽  
Vol 862 ◽  
Author(s):  
Vincent H. Liu ◽  
Husam H. Abu-Safe ◽  
Hameed A. Naseem ◽  
William D. Brown

AbstractThe formation of isolated silicon nanowires and silicon nanowire networks using aluminum thin film is investigated. The formation mechanism of the network mainly depends on the diffusion of silicon in the aluminum thin film. The silicon stops at the film grain boundaries. The continuous accumulations of silicon at these boundaries give raise to a continuous network of silicon nanowires. Characterization of the nanowires has been done using scanning electron microscopy and energy dispersive x-ray spectroscopy. These results are unique in the fact that the nanowires found are grown in a horizontal fashion instead of the more common vertical direction. Most of the nanowires have a diameter of about 60 nm and a length of over 10 μm.

2020 ◽  
Vol 12 (2) ◽  
pp. 254-262
Author(s):  
Kalyani Muninathan ◽  
Emerson Rajamony Navaneetha

At this present task, an attempt done in order to synthesize NiFeCo3O4 ternary thin film electrode by Electrodeposition method. Microstructure of the films studied using X-ray diffraction, energy dispersive X-ray spectroscopy (EDAX) and Field emission (FESEM) scanning electron microscopy. Films Electrochemical property were studied and confirmed with the help of charge discharge techniques using cyclic voltammetry, which confirms that the prepared electrode has excellent electrochemical capacitive behaviour with 757 F g–1 specific capacitance value of at the density in current about 1 mA g–1.


2003 ◽  
Vol 774 ◽  
Author(s):  
Parayil Kumaran Ajikumar ◽  
Rajamani Lakshminarayanan ◽  
Valiyaveettil Suresh

AbstractThin films of calcium carbonate were deposited on the surfaces of synthetic substrates using a simple biomimetic pathway. The Nylon 66 fiber knit pre-adsorbed with acidic polymers was used as a template for the controlled deposition of CaCO3 thin film. The presence of the soluble macromolecules on the fiber knit surface was characterized using ATR-FTIR spectroscopy. The characterization of the mineral films was carried out using scanning electron microscope (SEM), X-ray diffraction (XRD) and energy dispersive Xray scattering (EDX) studies.


2009 ◽  
Vol 1236 ◽  
Author(s):  
Muhammad Masood ◽  
Songuye Chen ◽  
Edwin T Carlen ◽  
Albert Van den Berg

AbstractSelective biomolecular functionalization of our all-(111) surface silicon nanowire (SiNW) biosensors using covalently linked alkyl- monolayers is demonstrated. Monolayers were made using a commercially available six member carbon precursor N-(5-Hexynyl) phthalimide and UV based hydrosylilation reaction. Contact angle and x-ray photoelectron spectroscopy (XPS) measurements were used to characterize the monolayer at different stages on planar Si (111) samples. Terminal amine groups on the monolayer surface were used for further conjugation with (+)-Biotin N-hydroxysuccinimide ester after deprotection of the phthalimide group with a methylamine solution. Selective biofunctionalization was demonstrated by reacting the SiNW-monolayer-biotin surface with 5 nm gold nanoparticles conjugated with streptavidin and subsequent high resolution scanning electron microscopy imaging.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Liu Liu ◽  
Decai Gong ◽  
Zhengquan Yao ◽  
Liangjie Xu ◽  
Zhanyun Zhu ◽  
...  

Abstract Historically, sutras played an important role in spreading Buddhist faith and doctrine, and today these remain important records of Buddhist thought and culture. A Mahamayuri Vidyarajni Sutra with polychrome paintings was found inside the cavity on top of the Nanmen Buddhist pagoda, built in the early Tang dynasty (618–627 CE) and located in Anhui Province, China. Textile was found on the preface which is strongly degraded and fragile. Unfortunately, the whole sutra is under severe degradation and is incomplete. Technical analysis based on scientific methods will benefits the conservation of the sutra. Optical microscopy (OM), micro-Raman spectroscopy combined with optical microscope (Raman), scanning electron microscopy in combination with energy dispersive X-ray analysis (SEM–EDS) and Fourier Transform Infrared Spectroscopy (FTIR) were used to characterize the pigment and gilded material, as well as the paper fiber and textile. Pigments such as cinnabar, minium, paratacamite, azurite, lead white were found. Gilded material was identified as gold. A five-heddle warp satin, made of silk, was found as the textile on the preface of the sutra. The sutra’s preface and inner pages were made of paper comprised of bamboo and bark. As a magnificent yet recondite treasure of Buddhism, the sutra was analyzed for a better understanding of the material. A conservation project of the sutra will be scheduled accordingly.


2012 ◽  
Vol 620 ◽  
pp. 314-319
Author(s):  
Nur Amira Mamat Razali ◽  
Fauziah Abdul Aziz ◽  
Saadah Abdul Rahman

Hardwood is wood from angiosperm trees. The characteristic of hardwood include flowers, endosperm within seeds and the production of fruits that contain the seeds. This paper aims to discuss the preparation and characterization of cellulose obtained from hardwood. The hardwood Merbau (Intsia bijuga) was chosen as raw material in this study. Alkaline treatment and delignification methods were used for the preparation of cellulose. Acid hydrolysis was employed to produce cellulose nanocrystal (CNC). The treated and untreated samples were characterized using x-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The final product, from both trated and untreated samples were then compared.


2012 ◽  
Vol 45 (3) ◽  
pp. 307-312 ◽  
Author(s):  
Takamichi Shinohara ◽  
Tomoko Shirahase ◽  
Daiki Murakami ◽  
Taiki Hoshino ◽  
Moriya Kikuchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document