Fabrication Methods for Improved Electromechanical Behavior in Piezoelectric Membranes

2005 ◽  
Vol 872 ◽  
Author(s):  
M.C. Robinson ◽  
P.D. Hayenga ◽  
J.H. Cho ◽  
C.D. Richards ◽  
R.F. Richards ◽  
...  

AbstractPiezoelectric materials convert mechanical to electrical energy under stretching and bending conditions. Optimizing the coupling conversion is imperative to the electromechanical behavior of a micromachined membrane's performance. This paper discusses analytical calculations that were devised to determine the microscale structure that minimizes residual stress and outlines the implementation of fabrication technique variations including three different electrode configurations, trenching around the membrane, and reducing the total composite residual stress of the support structure using compressive silicon oxide. Lead zirconacte titanate (PZT) films between 1 and 3 μm thick with a ratio of Zr to Ti of 40:60 were deposited onto 3 mm square silicon membranes. The total tensile stress in the composite structure reaches 100 MPa during standard fabrication processing. Utilizing analytical calculations, a structure was determined that lowered the residual stress of the composite to 11 MPa and increased the electromechanical coupling 35 times. Changing the geometry of the electrode coverage decreased the residual stress of the composite by 40%. Trenching around the membrane provided a membrane with boundary conditions that approached simply supported and decreased the composite residual stress by another 16%. A comparison of the electromechanical behavior for these structures will be discussed, showing a route towards increasing electromechanical coupling in PZT MEMS.

2003 ◽  
Vol 782 ◽  
Author(s):  
M. C. Robinson ◽  
J. C. Raupp ◽  
I. Demir ◽  
C. D. Richards ◽  
R. F. Richards ◽  
...  

ABSTRACTPiezoelectric materials can convert mechanical and electrical energy, a particularly useful tool in developing micro and nanoscale systems. Characterizing the electromechanical behavior is essential to the design and optimization of the material's and device's performance. This paper examines the influence of boundary (clamping) conditions, relative thickness variations between the active one to two micron thick piezoelectric membrane and underlying passive support structure, and the electrode coverage on the electromechanical behavior. Membranes were fabricated with silicon and lead zirconate titanate (PZT) with a ratio of Zr to Ti of 40:60 that provide thickness ratios between 1:2 and 2:1 by depositing the PZT using sequential solution deposition. PZT films contain a tensile stress that accumulates during processing, therefore a compressive stressed layer of tungsten was sputtered on bulk micromachined membranes to produce a near zero net residual stress. A nonlinear finite element numerical simulation technique is utilized for the analysis of the composite thin film. A comparison between the behavioral trends determined by simulation and experimental methods will be discussed.


2020 ◽  
Vol 6 (13) ◽  
pp. eaay5979 ◽  
Author(s):  
Chengpeng Hu ◽  
Xiangda Meng ◽  
Mao-Hua Zhang ◽  
Hao Tian ◽  
John E. Daniels ◽  
...  

Electromechanical coupling in piezoelectric materials allows direct conversion of electrical energy into mechanical energy and vice versa. Here, we demonstrate lead-free (KxNa1−x)NbO3 single crystals with an ultrahigh large-signal piezoelectric coefficient d33* of 9000 pm V−1, which is superior to the highest value reported in state-of-the-art lead-based single crystals (~2500 pm V−1). The enhanced electromechanical properties in our crystals are realized by an engineered compositional gradient in the as-grown crystal, allowing notable reversible non-180° domain wall motion. Moreover, our crystals exhibit temperature-insensitive strain performance within the temperature range of 25°C to 125°C. The enhanced temperature stability of the response also allows the materials to be used in a wider range of applications that exceed the temperature limits of current lead-based piezoelectric crystals.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 141
Author(s):  
Pornrawee Thonapalin ◽  
Sontipee Aimmanee ◽  
Pitak Laoratanakul ◽  
Raj Das

Piezoelectric materials are used to harvest ambient mechanical energy from the environment and supply electrical energy via their electromechanical coupling property. Amongst many intensive activities of energy harvesting research, little attention has been paid to study the effect of the environmental factors on the performance of energy harvesting from laminated piezoelectric materials, especially when the temperature in the operating condition is different from the room temperature. In this work, thermomechanical effects on the electrical energy harvested from a type of laminated piezoelectric devices, known as thin layer unimorph ferroelectric driver (called THUNDER) were investigated. Three configurations of THUNDER devices were tested in a controlled temperature range of 30–80 °C. The THUNDER devices were pushed by using a cam mechanism in order to generate required displacements and frequencies. The experimental results exhibited a detrimental effect of the elevated temperature on the generated voltage and the harvested electrical power. It is due to changes in residual stress and geometry. These results are advantageous for many applications of the THUNDER devices and for future design of a new laminated piezoelectric sensor and energy harvester in an elevated temperature environment.


2002 ◽  
Vol 748 ◽  
Author(s):  
C. L. Zhao ◽  
Z. H. Wang ◽  
W. Zhu ◽  
O. K. Tan ◽  
H. H. Hng

ABSTRACTLead zirconate titanate (PZT) films are promising for acoustic micro-devices applications because of their extremely high electromechanical coupling coefficients and excellent piezoelectric response. Thicker PZT films are crucial for these acoustic applications. A hybrid sol-gel technology has been developed as a new approach to realize simple and cost-effective fabrication of high quality PZT thick films. In this paper, PZT53/47 thick films with a thickness of 5–50 μm are successfully deposited on Pt-coated silicon wafer by using the hybrid sol-gel technology. The obtained PZT thick films are dense, crack-free, and have a nano-sized microstructure. The processing parameters of this technology have been evaluated. The microstructure of the film has been observed using field-emission scanning electron microscopy and the crystallization process has been monitored by the X-ray diffraction. The thick films thus made are good candidates for fabrication of piezoelectric diaphragm which will be an essential element of microspeaker and microphone arrays.


2011 ◽  
Vol 105-107 ◽  
pp. 2109-2112
Author(s):  
Jian Guo Sheng ◽  
Ping Zeng ◽  
Can Can Zhang

With the development of science and technology, the smaller sizes generator, the more attention by people. The main purpose of this article is to manufacture piezoelectric nanogenerator under micro vibration and its working principle is introduced and its performance is studied. The results show that, using the present nanomaterials, piezoelectric materials can be prepared. When its wind in copper laps, under the situation of micro pulse vibration its can turn into electrical energy, thus yield piezoelectric nanogenerators. In ambient vibration condition, piezoelectric materials produce larger rated current and voltage. However, copper laps cutting magnetic line of force produce less rated current and voltage. So the piezoelectric nanogenerators can be separately used to supply power. If multiple piezoelectric nanogenerator in tandem may produce higher voltage, current and power, which possess commercial value.


2011 ◽  
Vol 1299 ◽  
Author(s):  
Ping Du ◽  
I-Kuan Lin ◽  
Yunfei Yan ◽  
Xin Zhang

ABSTRACTSilicon carbide (SiC) has received increasing attention on the integration of microelectro-mechanical system (MEMS) due to its excellent mechanical and chemical stability at elevated temperatures. However, the deposition process of SiC thin films tends to induce relative large residual stress. In this work, the relative low stress material silicon oxide was added into SiC by RF magnetron co-sputtering to form silicon oxycarbide (SiOC) composite films. The composition of the films was characterized by Energy dispersive X-ray (EDX) analysis. The Young’s modulus and hardness of the films were measured by nanoindentation technique. The influence of oxygen/carbon ratio and rapid thermal annealing (RTA) temperature on the residual stress of the composite films was investigated by film-substrate curvature measurement using the Stoney’s equation. By choosing the appropriate composition and post processing, a film with relative low residual stress could be obtained.


Author(s):  
G.JITHENDRA NAIDU ◽  
K.PRANAY KUMAR REDDY ◽  
S.SIVA PRASAD

Due to advancement in the field of technology in recent years, wireless data transmission techniques are commonly used in electronic devices. For powering them we rely upon power supply through wires charging, else power may be supplied from batteries. But while travelling for longer distances continuously we may not be able to obtain power supply for these devices to operate or to recharge their batteries. So in order to operate them continuously we need a power source that provides continuous energy to operate these devices. The mechanical vibrations which are produced by the automobiles can be utilized as a source of energy for generating electrical energy that can be utilized by these electronic equipment to operate. These vibrations are produced by different vehicles around us which is going as a waste. This technique utilizes piezoelectric components where deformations produced by vibrations are directly converted to electrical charge via piezoelectric effect and principle of electromagnetic induction between coil and magnetic field which produces Electromotive force in the coil provided displacement to magnet by the vibrations. The piezoelectric materials and permanent magnets are used as energy conversion devices for converting mechanical vibrations to electrical energy. In this context, we introduced two methods and considered its output performance provided input vibrations, by using piezoelectric materials such as PZT for electro mechanical conversion using Mass-spring system as medium of conversion of force from vibrations applied on PZT materials and by using spring-magnet system where relative displacement of magnet with respect to coil, provided input vibrations generates Electromotive force in coil.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7863
Author(s):  
Mehwish Hanif ◽  
Varun Jeoti ◽  
Mohamad Radzi Ahmad ◽  
Muhammad Zubair Aslam ◽  
Saima Qureshi ◽  
...  

Lately, wearable applications featuring photonic on-chip sensors are on the rise. Among many ways of controlling and/or modulating, the acousto-optic technique is seen to be a popular technique. This paper undertakes the study of different multilayer structures that can be fabricated for realizing an acousto-optic device, the objective being to obtain a high acousto-optic figure of merit (AOFM). By varying the thicknesses of the layers of these materials, several properties are discussed. The study shows that the multilayer thin film structure-based devices can give a high value of electromechanical coupling coefficient (k2) and a high AOFM as compared to the bulk piezoelectric/optical materials. The study is conducted to find the optimal normalised thickness of the multilayer structures with a material possessing the best optical and piezoelectric properties for fabricating acousto-optic devices. Based on simulations and studies of SAW propagation characteristics such as the electromechanical coupling coefficient (k2) and phase velocity (v), the acousto-optic figure of merit is calculated. The maximum value of the acousto-optic figure of merit achieved is higher than the AOFM of all the individual materials used in these layer structures. The suggested SAW device has potential application in wearable and small footprint acousto-optic devices and gives better results than those made with bulk piezoelectric materials.


2013 ◽  
Vol 745 ◽  
pp. 41-56 ◽  
Author(s):  
Eugenio Brusa

Vibration monitoring based on wireless distributed sensors is currently used in steelmaking plants to early detect structural damage occurring in the rolling mill components. This approach allows overcoming some severe limitations of access to those industrial equipments, but sensors need a local power supply. Vibration energy harvesting based on piezoelectric materials is therefore proposed for this purpose. Nevertheless, very often it happens that dimensions of the energy scavenger are incompatible with the size of the system, thus not allowing a perfect tuning of its resonance upon the frequency of the dynamic excitation. Moreover, sometimes the amplitude of vibration is too low to induce a sufficient amount of energy conversion. Those problems motivated a previous work of the author, about the feasibility of plucking the flexible structure through either a relative motion or rotation of the harvested system and the energy scavenger, respectively. To avoid the drawbacks due to the wear in plucking the material, a contactless electromechanical coupling was proposed. The interaction between two permanent magnets, being one applied to the scavenger tip and the other fixed, was used to excite the vibration and the electromechanical conversion through the piezoelectric layer. The effectiveness of such hybrid system composed by the structure with surface bonded piezoelectric layers and the couple of magnets was investigated and compared to the power requirements of some sensors currently used to measure the dynamic response of the backup roll bearings located at the outer crown of the rolling mill. An optimisation of the whole device to increase the overall performance is proposed by following some approaches assessed in the literature and tested on some specimens of energy scavenger. The optimisation activity was based on a suitable selection of the piezoelectric material aimed at reaching the highest electromechanical coupling with a good mechanical strength and on a suitable shaping of the electrode surface aimed at assuring the largest efficiency in the energy conversion.


Author(s):  
Luã Guedes Costa ◽  
Luciana Loureiro da Silva Monteiro ◽  
Pedro Manuel Calas Lopes Pacheco ◽  
Marcelo Amorim Savi

Piezoelectric materials exhibit electromechanical coupling properties and have been gained importance over the last few decades due to their broad range of applications. Vibration-based energy harvesting systems have been proposed using the direct piezoelectric effect by converting mechanical into electrical energy. Although the great relevance of these systems, performance enhancement strategies are essential to improve the applicability of these system and have been studied substantially. This work addresses a numerical investigation of the influence of cubic polynomial nonlinearities in energy harvesting systems considering a bistable structure subjected to harmonic excitation. A deep parametric analysis is carried out employing nonlinear dynamics tools. Results show complex dynamical behaviors associated with the trigger of inter-well motion. Electrical power output and efficiency are monitored in order to evaluate the configurations associated with best system performances.


Sign in / Sign up

Export Citation Format

Share Document