film structure
Recently Published Documents


TOTAL DOCUMENTS

1330
(FIVE YEARS 184)

H-INDEX

54
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Shizhao Wu ◽  
Xiaofeng Lu ◽  
Hanlu Gao ◽  
Shitao Zheng ◽  
Jing Gao ◽  
...  

Abstract Herein, the electrochamical synthesis of tungsten trioxide (WO3·H2O) with globular clusters constructed of nanoplates is demonstrated. On applying a breakdown anodization potential of 25 V at 50 °C, tungsten foil anode is efficiently electro-oxidized into WO3 globular clusters constructed of nanoplates powder, instead of a thin film structure as conventional anodization occurs. The resulting globular clusters were characterized using SEM, TEM, and XRD. The effect of the composition of electrolyte on the breakdown anodization of the W substrate is discussed. And we suggest that the growth of the nanoplates is initiated by localized anodic dielectric breakdown, followed by a effectively crystal growth in electrolyte at high breakdown field.


Coatings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 27
Author(s):  
Aleksander Gaydaychuk ◽  
Stepan Linnik ◽  
Aleksander Mitulinsky ◽  
Sergei Zenkin

In this paper, we focus on the research of Al addition on Hf–Al–C film structure and oxidation resistance. It was found that obtained Hf–A–C films consist of a solid solution of Al in non-stoichiometric cubic HfC and have identical XRD patterns to bcc–HfC. Besides, the Al addition decreases the sample mass gain during oxidation in air at temperatures up to 800 °C. Mass gain for Hf–Al–C was 44.3 and 22.5% less, compared to pristine HfC, at 600 and 800 °C, respectively.


Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 20
Author(s):  
Yan Gao ◽  
Yadong Fan ◽  
Junxi Zhang ◽  
Xuanxuan Liu ◽  
Ning Wang ◽  
...  

A facile strategy to boost anticorrosion potency of graphene oxide/silica hybrid sol-gel coating is developed through fully exploiting the capabilities of graphene oxide (GO). Together with a barrier to corrosives and crack inhibitor, GO was further explored herein as a regulator to regulate the gelation process and provide robust coating films with stratified microstructures and ultimately extended diffusion paths. The sol-gel coating with stratified microstructure achieved on AA5052 aluminum alloy surface afforded greatly enhanced corrosion protection capability as assessed by electrochemical measurements and immersion tests. The corrosion current density of the sample of a hybrid GO sol-gel film was about 30 times less than that of sample of pure sol-gel film sample. The regulation mechanism of GO during the film formation process and the anticorrosive protection properties of the film were discussed.


Literartes ◽  
2021 ◽  
Vol 1 (15) ◽  
pp. 199-214
Author(s):  
Amanda de Oliveira

This study aims at analyzing slasher films as potential allegories for the therapeutic process of uncovering trauma, proposing a reading of the slasher killer as a metaphor for the trauma. To perform this analysis, the plots of the movies A Nightmare on Elm Street (Bayer, 2010) and Final Girls (Schulsson, 2015), were read as possible allegories for a psychoanalytical process in which their final girls come to terms with trauma as they face the killers. This analysis is performed based on the slasher film structure as composed by Final Girl versus Slasher killer, as defined by Carol Clover (1992), and, as their confrontation takes place in what Clover calls the Terrible place, that is compared to the unconscious and its dynamics, as proposed by Sigmund Freud’s The Ego and the Id (2019). The correlation of trauma and fictional narratives is performed based on Cathy Caruth’s (1996) studies of trauma and the construction of narratives.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3350
Author(s):  
Ivan Bizyaev ◽  
Pavel Gabdullin ◽  
Maxim Chumak ◽  
Vladislav Babyuk ◽  
Sergey Davydov ◽  
...  

Herein, we describe a study of the phenomenon of field-induced electron emission from thin films deposited on flat Si substrates. Films of Mo with an effective thickness of 6–10 nm showed room-temperature low-field emissivity; a 100 nA current was extracted at macroscopic field magnitudes as low as 1.4–3.7 V/μm. This result was achieved after formation treatment of the samples by combined action of elevated temperatures (100–600 °C) and the electric field. Morphology of the films was assessed by AFM, SEM, and STM/STS methods before and after the emission tests. The images showed that forming treatment and emission experiments resulted in the appearance of numerous defects at the initially continuous and smooth films; in some regions, the Mo layer was found to consist of separate nanosized islets. Film structure reconstruction (dewetting) was apparently induced by emission-related factors, such as local heating and/or ion irradiation. These results were compared with our previous data obtained in experiments with carbon islet films of similar average thickness deposited onto identical substrates. On this basis, we suggest a novel model of emission mechanism that might be common for thin films of carbon and refractory metals. The model combines elements of the well-known patch field, multiple barriers, and thermoelectric models of low-macroscopic-field electron emission from electrically nanostructured heterogeneous materials.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Li Ma ◽  
Mahdi Hamidinejad ◽  
Biao Zhao ◽  
Caiyun Liang ◽  
Chul B. Park

AbstractLightweight, high-efficiency and low reflection electromagnetic interference (EMI) shielding polymer composites are greatly desired for addressing the challenge of ever-increasing electromagnetic pollution. Lightweight layered foam/film PVDF nanocomposites with efficient EMI shielding effectiveness and ultralow reflection power were fabricated by physical foaming. The unique layered foam/film structure was composed of PVDF/SiCnw/MXene (Ti3C2Tx) composite foam as absorption layer and highly conductive PVDF/MWCNT/GnPs composite film as a reflection layer. The foam layer with numerous heterogeneous interfaces developed between the SiC nanowires (SiCnw) and 2D MXene nanosheets imparted superior EM wave attenuation capability. Furthermore, the microcellular structure effectively tuned the impedance matching and prolonged the wave propagating path by internal scattering and multiple reflections. Meanwhile, the highly conductive PVDF/MWCNT/GnPs composite (~ 220 S m−1) exhibited superior reflectivity (R) of 0.95. The tailored structure in the layered foam/film PVDF nanocomposite exhibited an EMI SE of 32.6 dB and a low reflection bandwidth of 4 GHz (R < 0.1) over the Ku-band (12.4 − 18.0 GHz) at a thickness of 1.95 mm. A peak SER of 3.1 × 10–4 dB was obtained which corresponds to only 0.0022% reflection efficiency. In consequence, this study introduces a feasible approach to develop lightweight, high-efficiency EMI shielding materials with ultralow reflection for emerging applications.


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 336
Author(s):  
Xinyuan Guo ◽  
Tong Guo ◽  
Lin Yuan

A new technique is proposed for measuring film structure based on the combination of time- and frequency-domain fitting and white-light scanning interferometry. The approach requires only single scanning and employs a fitting method to obtain the film thickness and the upper surface height in the frequency and time domains, respectively. The cross-correlation function is applied to obtain the initial value of the upper surface height, thereby making the fitting process more accurate. Standard films (SiO2) with different thicknesses were measured to verify the accuracy and reliability of the proposed method, and the three-dimensional topographies of the upper and lower surfaces of the films were reconstructed.


Author(s):  
Ryo Ono ◽  
Shinya Imai ◽  
Yuta Kusama ◽  
Takuya Hamada ◽  
Masaya Hamada ◽  
...  

Abstract Sputtering enables uniform and clean deposition over a large area, which is an issue with exfoliation and chemi-cal vapor deposition methods. On the other hand, the process of physical vapor deposition (PVD) film formationhas not yet been clarified. We prepared several samples from the sub-monolayer region, and performed Ra-man spectroscopy, X-ray photon spectroscopy and high-angle annular dark-field scanning transmission electronmicroscopy. From these results, the internal stresses inherent to PVD films, the bonding states specific to sub-monolayers, and the unique film structure and the grain formation process of PVD films were discussed fromthe perspective of sub-monolayers. As a conclusion, we found that it is important to suppress the formation ofsub-monolayers on the substrate to completely form the first layer.


2021 ◽  
Vol 2145 (1) ◽  
pp. 012030
Author(s):  
Adisorn Buranawong ◽  
Nirun Witit-Anun

Abstract In this research, nanostructured chromium zirconium nitride (CrZrN) thin film has been deposited on Si(100) substrates by reactive DC magnetron co-sputtering method without in situ substrate heating and post-deposition annealing. The effects of Zr content on thin film structure and morphology were investigated. The Zr content in the films were varied by applied the sputtering current of Zr target (Izr) in the range of 300 to 900 mA, whereas the current of Cr target was kept at 300 mA. The crystal structure, microstructure, morphology, thickness, and chemical composition were characterized by glancing angle X-ray diffraction (GA-XRD), field emission scanning electron microscopy (FE-SEM), and energy-dispersive X-ray spectroscopy (EDS) techniques, respectively. The results showed that the increase of Izr not only increased the deposition rate, but also increased the Zr content of the as-deposited film ranging from 3.9 to 26.5 at%. The as-deposited thin films were formed as a (Cr,Zr)N solid solution, with fcc structure in (111) and (200) plane, where Cr atoms were replaced by Zr atoms in the CrN lattice. The 2θ diffraction peaks were shifted to the lower value as increase of Zr content which was obtained by increased Izr. The nanocrystalline CrZrN structure with crystal sizes smaller than 10 nm structure were calculated for as-deposited thin films. The lattice parameters increased from 4.187 to 4.381 Å, whereas the crystal size decreased from 8.3 to 6.4 nm. The FE-SEM images of all the CrZrN films exhibited compact columnar with dense morphology as a function of Zr content. Moreover, the thickness of the CrZrN thin films was increased of 302 – 421 nm.


Sign in / Sign up

Export Citation Format

Share Document