Near-surface scattering effects observed with a high-frequency phased array at Pinyon Flats, California

1998 ◽  
Vol 88 (6) ◽  
pp. 1548-1560
Author(s):  
Frank L. Vernon ◽  
Gary L. Pavlis ◽  
Tom J. Owens ◽  
Dan E. McNamara ◽  
Paul N. Anderson

Abstract Analysis of data collected by a high-frequency array experiment conducted at Pinyon Flat in southern California provides strong evidence that the high-frequency wave field from local earthquakes at this hard-rock site are strongly distorted by near-surface scattering. The seismic array we deployed consisted of 60, 2-Hz natural frequency, three-component sensors deployed in a three-dimensional array. Two of the sensors were located in boreholes at 150 and 275 m depth. The other 58 sensors were deployed in an areal array above these boreholes. Thirty-six of these were deployed in a 6-by-6 element grid array with a nominal spacing of 7 m centered over the borehole sensors. The remaining 22 seismometers were laid out in two 11-element linear arrays radiating outward from the grid. Coherence calculations reveal a rapid loss of coherence at frequencies over 15 Hz at all but the shortest length scales of this array. Three-dimensional visualization techniques were used to closely examine the spatial stability of particle motions of P and S waves. This reveals systematic variations of particle motion across the array in which the particle motion tracks tilt drastically away from the backazimuth expected for an isotropic medium. These variations, however, are frequency dependent. Below around 8 Hz, the particle motions become virtually identical for all stations. At progressively higher frequencies, the wave-field particle motion becomes increasingly chaotic. Frequency-wave-number analysis of these data provide quantitative measures of the same phenomena. We find that direct wave f-k spectra are bathed in a background of signal-generated noise that varies from 10 to 30 dB down from the direct arrival signal. This signal-generated noise appears to be nearly white in wavenumber indicating the wavelength of this “noise” on the scale of tens of meters and less. Refraction measurements we made on two lines crisscrossing the array reveal that the weathered layer velocities are highly variable and define a very strong wave guide. Measured surface P-wave velocities varied from 400 to 1300 m/sec, and velocities at depth of approximately 15 m varied from 1600 to 2700 m/sec. Previous measurements in the boreholes showed that the intact granite below about 65 m depth has a velocity of approximately 5400 m/sec. These results demonstrate the extreme velocity contrast and degree of velocity heterogeneity of the near surface at this site. We conclude that all the observations we made can be explained by strong scattering of incident body-wave signals into a complex mishmash of body-wave and surface-wave modes in this heterogeneous near-surface wave guide.

1961 ◽  
Vol 51 (1) ◽  
pp. 1-12
Author(s):  
Jack Oliver

Abstract S and multiple S phases at moderate to large epicentral distances are frequently followed by normally-dispersed, long-period, wave trains for which surface particle motion is elliptical and progressive and in the plane of propagation of the SV wave. The character of such phases can be explained as the result of coupling between the incident shear waves and dispersive PL waves in the near-surface wave guide. A detailed study of shocks in Mexico and in Montana recorded at Resolute, and less detailed studies of other data support this hypothesis.


Author(s):  
V Yu Ovsyannikov ◽  
A A Berestovoy ◽  
N N Lobacheva ◽  
V V Toroptsev ◽  
S A Trunov

1971 ◽  
Vol 38 (4) ◽  
pp. 899-905 ◽  
Author(s):  
L. B. Freund

Three-dimensional wave propagation in an elastic half space is considered. The half space is traction free on half its boundary, while the remaining part of the boundary is free of shear traction and is constrained against normal displacement by a smooth, rigid barrier. A time-harmonic surface wave, traveling on the traction free part of the surface, is obliquely incident on the edge of the barrier. The amplitude and the phase of the resulting reflected surface wave are determined by means of Laplace transform methods and the Wiener-Hopf technique. Wave propagation in an elastic half space in contact with two rigid, smooth barriers is then considered. The barriers are arranged so that a strip on the surface of uniform width is traction free, which forms a wave guide for surface waves. Results of the surface wave reflection problem are then used to geometrically construct dispersion relations for the propagation of unattenuated guided surface waves in the guiding structure. The rate of decay of body wave disturbances, localized near the edges of the guide, is discussed.


Geophysics ◽  
2018 ◽  
Vol 83 (1) ◽  
pp. R1-R11 ◽  
Author(s):  
Dmitry Borisov ◽  
Ryan Modrak ◽  
Fuchun Gao ◽  
Jeroen Tromp

Full-waveform inversion (FWI) is a powerful method for estimating the earth’s material properties. We demonstrate that surface-wave-driven FWI is well-suited to recovering near-surface structures and effective at providing S-wave speed starting models for use in conventional body-wave FWI. Using a synthetic example based on the SEG Advanced Modeling phase II foothills model, we started with an envelope-based objective function to invert for shallow large-scale heterogeneities. Then we used a waveform-difference objective function to obtain a higher-resolution model. To accurately model surface waves in the presence of complex tomography, we used a spectral-element wave-propagation solver. Envelope misfit functions are found to be effective at minimizing cycle-skipping issues in surface-wave inversions, and surface waves themselves are found to be useful for constraining complex near-surface features.


2019 ◽  
Vol 24 (4) ◽  
pp. 641-652
Author(s):  
Feng Liang ◽  
Zhihui Wang ◽  
Hailong Li ◽  
Kai Liu ◽  
Tao Wang

Urban geophysics ups the ante in the world of applied geophysics, which requires innovative thinking and seemingly off-the-wall approaches, if for no other reason than the settings. Ambient-noise-tomography (ANT) can play a pivotal role in yielding subsurfa2ce information in urban areas, which is capable of dealing with challenges related to these scenarios ( e.g., human activities and low signal-to-noise ratio). In this study, the ANT was conducted to investigate the near-surface shear-velocity structure in the surrounding area of the Baotu Spring Park in downtown Jinan, Shandong Province, China. Quiet clear Rayleigh waves have been obtained by the cross-correlation, which indicates that strong human activities, such as moving vehicles and municipal engineering constructions, can produce approximately isotropic distribution of noise sources for high-frequency signals. The direct surface-wave tomographic method with period-dependent ray-tracing was used to invert all surface-wave dispersion data in the period band 0.2-1.5 s simultaneously for 3D variations of shear-velocity (Vs) structure. Our results show a good correspondence to the geological features with thinner Quaternary sediments, the geological structural characteristic of the limestone surrounded by the igneous which has the highest velocity than that of the limestone in the study area, and several concealed faults of which specific location has been detected at depth. The results demonstrate that it is possible to successfully use ANT with high-frequency signal in an urban environment provided a detailed planning and execution is implemented.


Author(s):  
Arata Masuda ◽  
Yuya Ogawa ◽  
Akira Sone

This paper presents an improvement of a nonlinear piezoelectric impedance modulation (NPIM)-based damage detection method, a damage-sensitive, baseline-free structural health monitoring technique proposed by the authors, by introducing self-excited oscillation. The NPIM-based damage detection utilizes the modulation of high-frequency wave field of structures caused by the contact acoustic nonlinearity at the damaged part. In this study, the high-frequency wave field is induced as a self-excited oscillation of the structure by positively feed-backing the strain signal measured by a surface-bonded piezoelectric sensor, followed by a phase-shift in 90 degrees and a nonlinear element consisting of a saturation element and a negative linear gain. The induced self-excitation can have multiple stable limit cycles at certain eigenmode frequencies, and one can switch among them by inputting an auxiliary excitation signal into the feedback loop. The current flowing through the piezoelectric sensor is measured to detect its modulation due to the stiffness fluctuation due to the existence of the contact-type damage. Experiments using a specimen with a simulated damage are conducted to examine the performance of the self-excitation circuit and its applicability to the NPIM-based damage detection method.


Sign in / Sign up

Export Citation Format

Share Document