scholarly journals Analysis of growth, development and yield in a spacing experiment with winter rye (Secale cereals L.).

1966 ◽  
Vol 14 (3) ◽  
pp. 198-214
Author(s):  
J. Bruinsma

It was concluded from an experiment with Petkus winter rye sown at 7 seed rates in the range 5-180 kg/ha that: (1) crop analysis facilitated the interpretation of yield analysis; (2) crop analysis can be confined to the counting of plants at tillering, of ears during heading and of florets per ear after anthesis, and to determinations of either dry weight or of N or chlorophyll contents per unit soil area, per plant or per organ; (3) tillering was able to compensate for lower plant densities until 1.5 dm2 of space per plant was reached; (4) at decreasing seed rates, the rate of development decreased, while the number of florets per ear, floret fertility and rate and duration of grain filling increased; (5) the number of florets per ear, their fertility and grain filling depended on the nutritive conditions during tillering and shooting, at about the time of anthesis, and during ripening, respectively; (6) there were close correlations between the amount of N and of chlorophyll in the aerial parts and the logarithm of plant or culm space, indicating that the relative space per plant or per culm rather than the absolute space per plant or per culm was the determining factor; (7) grain weight and total weight per culm increased proportionally with logarithm of culm space and, hence, yield per unit area showed an optimum value at a culm density of about 2.7 x 106 culms per ha; (8) dry-matter distribution in the culms was largely independent of the size and the nutritive conditions of the culms, grain weight always being about 30% of total weight.-A.G.G.H. (Abstract retrieved from CAB Abstracts by CABI’s permission)

2020 ◽  
Vol 126 (6) ◽  
pp. 1063-1076 ◽  
Author(s):  
Jaime Herrera ◽  
Daniel F Calderini

Abstract Background and Aims The pericarp weight comprises <17 % of wheat grain weight at harvest. The pericarp supports the hydration and nutrition of both the embryo and endosperm during early grain filling. However, studies of the pericarp and its association with final grain weight have been scarce. This research studied the growth dynamics of wheat pericarp from anthesis onwards and its relationship to final grain weight under contrasting plant densities and night warming. Methods Two spring wheat cultivars contrasting in kernel weight (Bacanora and Kambara) were sown in field conditions during seasons 2012–13 and 2014–15. Both genotypes were grown under contrasting plant density (control, 370 plants m–2; and low plant density, 44 plants m–2) and night temperatures, i.e. at ambient and increased (>6 °C) temperature for short periods before and after anthesis. From anthesis onward, grains were harvested every 3 or 4 d. Grain samples were measured and the pericarp was removed with a scalpel. Whole grain and pericarp fresh and dry weight were weighed with a precision balance. At harvest, 20 grains from ten spikes were weighed and grain dimensions were measured. Key Results Fresh weight, dry matter and water content of pericarp dynamics showed a maximum between 110 and 235 °Cd. Maximum dry matter of the pericarp ranged between 4.3 and 5.7 mg, while water content achieved values of up to 12.5 mg. Maximum values and their timings were affected by the genotype, environmental condition and grain position. Final grain weight was closely associated with maximum dry matter and water content of the pericarp. Conclusions Maximum pericarp weight is a determinant of grain weight and size in wheat, which is earlier than other traits considered as key determinants of grain weight during grain filling. Better growing conditions increased maximum pericarp weight, while higher temperature negatively affected this trait.


Author(s):  
Milka Brdar ◽  
Marija Kraljevic-Balalic ◽  
Borislav Kobiljski

Grain yield of wheat is dependent on grain weight, which is the result of grain filling duration and rate. The study was undertaken to examine the relation between grain weight and rate and duration of grain filling in five high-yielding NS wheat cultivars. Stepwise multivariate analysis of nonlinear regression estimated grain filling parameters was used to examine cultivar differences in grain filling. On the basis of three-year average, the highest grain dry weight had cultivar Renesansa, and the lightest grains were measured for cultivar Evropa 90. Stepwise multivariate analysis indicated that all three nonlinear regression estimated parameters (grain weight, rate and duration of grain filling) were equally important in characterizing the grain filling curves of the cultivars studied, although sequence of their significance varied in different years, which is probably caused by different environmental conditions in three years of experiment.


Author(s):  
B. P. Meena ◽  
G. S. Chouhan ◽  
V. K. Meena ◽  
H. S. Sumeriya

Application of eight irrigations (seedling, 6 leaf, knee-high, before tasseling, 50% tasseling, 50% silking, grain formation and grain filling stages) where no stress was occurred significantly increased dry matter distribution. Data related to dry matter partitioning in stem, leaves and cobs at 25, 50, 75 and at harvest stage of crop. In general, irrespective of the treatments, crop attained maximum leaf dry weight at flowering stage. This decreased progressively up to harvest stage. While, stem dry weight showed increasing trend up to tasseling and silking stage and than declined slightly towards harvest stage of the crop. Obviously, cobs dry weight increased linearly from flowering up to harvest stage.


2018 ◽  
Vol 44 (2) ◽  
pp. 117-125
Author(s):  
AMM Golam Adam ◽  
Rasedul Islam ◽  
Hasna Hena Begum

A pot experiment was carried out to evaluate the effect of different concentrations (0, 10, 25, 50 and 100 ppm) of TIBA on yield and biochemical attributes of BRRI dhan-44. Results revealed that number of effective tillers and dry weight of panicle per plant, length of panicle, number of grains per panicle, 1000-grain weight, yield per plant and harvest index increased due to all concentrations of TIBA treatments where, treatments mean varied significantly in majority of cases. The stimulatory effect of TIBA treatments on number of effective tillers and dry weight of panicles per plant, length of panicle, number of grains per panicle and 1000-grain weight resulted significant increase in grain yield per plant. The maximum yield per plant (17.83 g) was obtained from 10 ppm TIBA treatment which was 59.76 % higher over the control. Increases in yield per plant due to 25, 50 and 100 ppm TIBA were 50.53, 47.58 and 28.49%, respectively. Findings of this investigation showed that foliar application of TIBA had beneficial effect on pigment content of leaves at tillering and grain filling stages with a few exceptions. Protein content of leaves was also positively influenced by most of the treatment at tillering stage. Out of five treatments, 10 ppm TIBA produced better results. Asiat. Soc. Bangladesh, Sci. 44(2): 117-125, December 2018


Genetika ◽  
2006 ◽  
Vol 38 (3) ◽  
pp. 175-181 ◽  
Author(s):  
Milka Brdar ◽  
Borislav Kobiljski ◽  
Marija Balalic-Kraljevic

Grain yield of wheat (Triticum aestivum L.) is influenced by number of grains per unit area and grain weight, which is result of grain filling duration and rate. The aim of the study was to investigate the relationships between grain filling parameters in 4 wheat genotypes of different earliness and yield components. Nonlinear regression estimated and observed parameters were analyzed. Rang of estimated parameters corresponds to rang of observed parameters. Stepwise MANOVA indicated that the final grain dry weight, rate and duration of grain filling were important parameters in differentiating among cultivars grain filling curves. The yield was positively correlated with number of grains/m2, grain weight and grain filling rate, and negatively correlated with grain filling duration. Correlation between grain weight and rate of grain filling was positive. Grain filling duration was negatively correlated with grain filling rate and number of grains/m2. The highest yield on three year average had medium late Mironovska 808, by the highest grain weight and grain filling rate and optimal number of grains/2 and grain filling duration.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yankun Sun ◽  
Jiaqi Xu ◽  
Xiangyang Miao ◽  
Xuesong Lin ◽  
Wanzhen Liu ◽  
...  

AbstractAs the global population continues to increase, global food production needs to double by 2050 to meet the demand. Given the current status of the not expansion of cultivated land area, agronomic seedlings are complete, well-formed and strong, which is the basis of high crop yields. The aim of this experiment was to study the effects of seed germination and seedling growth in response to silicon (from water-soluble Si fertilizer). The effects of Si on the maize germination, seedling growth, chlorophyll contents, osmoprotectant contents, antioxidant enzyme activities, non-enzymatic antioxidant contents and stomatal characteristics were studied by soaking Xianyu 335 in solutions of different concentrations of Si (0, 5, 10, 15, 20, and 25 g·L−1). In this study, Si treatments significantly increased the seed germination and per-plant dry weight of seedlings (P < 0.05), and the optimal concentration was 15 g·L−1. As a result of the Si treatment of the seeds, the chlorophyll content, osmotic material accumulation and antioxidant defence system activity increased, reducing membrane system damage, reactive oxygen species contents, and stomatal aperture. The results suggested that 15 g·L−1 Si significantly stimulated seed germination and promoted the growth of maize seedlings, laying a solid foundation for subsequent maize growth.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yingying Sun ◽  
Suiqi Zhang ◽  
Jiakun Yan

AbstractEight dryland winter wheat cultivars (Triticum aestivum L.), which were widely cultivated from the 1940s to the 2010s in Shaanxi Province, China, were selected and grown in plots, and two water treatments (irrigation and drought) were used to identify the contribution of ears, leaves and stems to grain weight and grain number associated with cultivar replacement. The plant height and stem dry weight of the dryland wheat decreased significantly during the cultivar replacement process, but there was a remarkable increase in the dry matter translocation of stems under irrigation. Shaded-ear and defoliation treatment could decrease the grain number and grain weight, and the grain weight was more influenced. Both the leaf and ear are important photosynthetic sources for dryland wheat, and the contribution of ear assimilates showed a significant increase over time; however, the contribution of leaf assimilates showed a negative correlation with cultivation over time. The accumulation of stem assimilates and ear photosynthesis both increased the grain weight potential. In the future breeding process, cultivars with more assimilates stored in the stem and greater assimilative capacity of ears, especially a greater contribution of ear assimilates, are expected to increase the grain yield.


1975 ◽  
Vol 26 (3) ◽  
pp. 497 ◽  
Author(s):  
EAN Greenwood ◽  
P Farrington ◽  
JD Beresford

The time course of development of a lupin crop was studied at Bakers Hill, Western Australia. The aim was to gain insight into the crop factors influencing yield. Weekly measurements were made of numbers and weights of plant parts, and profiles of roots, leaf area and light interception. A profile of carbon dioxide in the crop atmosphere was taken at the time of maximum leaf area, and the net carbon dioxide exchange (NCE) of pods was estimated for three successive weeks. The crop took 10 weeks to attain a leaf area index (LAI) of 1 and a further 9 weeks to reach a maximum LAI of 3.75, at which time only 33% of daylight reached the pods on the main axis. Once the maximum LAI was attained at week 19, leaf fall accelerated and rapid grain filling commenced almost simultaneously on all of the three orders of axes which had formed pods. Measurements of NCE between pods on the main axis and the air suggest that the assimilation of external carbon dioxide by the pods contributed little to grain filling. Grain dry weight was 2100 kg ha-1 of which 30%, 60% and 10% came from the main axis, first and second order apical axes respectively. Only 23% of the flowers set pods and this constitutes an important physiological limitation to grain yield.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaojing Xu ◽  
Yingli Zhou ◽  
Ping Mi ◽  
Baoshan Wang ◽  
Fang Yuan

AbstractLimonium sinuatum, a member of Plumbaginaceae commonly known as sea lavender, is widely used as dried flower. Five L. sinuatum varieties with different flower colors (White, Blue, Pink, Yellow, and Purple) are found in saline regions and are widely cultivated in gardens. In the current study, we evaluated the salt tolerance of these varieties under 250 mmol/L NaCl (salt-tolerance threshold) treatment to identify the optimal variety suitable for planting in saline lands. After the measurement of the fresh weight (FW), dry weight (DW), contents of Na+, K+, Ca2+, Cl−, malondialdehyde (MDA), proline, soluble sugars, hydrogen peroxide (H2O2), relative water content, chlorophyll contents, net photosynthetic rate, and osmotic potential of whole plants, the salt-tolerance ability from strongest to weakest is identified as Pink, Yellow, Purple, White, and Blue. Photosynthetic rate was the most reliable and positive indicator of salt tolerance. The density of salt glands showed the greatest increase in Pink under NaCl treatment, indicating that Pink adapts to high-salt levels by enhancing salt gland formation. These results provide a theoretical basis for the large-scale planting of L. sinuatum in saline soils in the future.


1970 ◽  
Vol 38 (3) ◽  
pp. 287-295 ◽  
Author(s):  
I. L. Craft

1. A study of the length, total weight and weight per cm of the small intestine of virgin, pregnant and lactating rats has provided evidence for an increase in intestinal surface area in pregnancy and lactation. 2. Because of such alterations in morphology of the gut the absorption,in vivo, of the substrates studied, glucose and glycine, has been expressed in terms of amount transferred per loop and also per g dry weight of intestine. 3. Using these parameters the results show that pregnancy does not alter the ability of the upper jejunum to absorb glucose and glycine. In lactation there is a significant decrease in the transfer of these substances when expressed per g dry weight of intestine, but not in absolute terms.


Sign in / Sign up

Export Citation Format

Share Document