scholarly journals Choosing the Optimal Multi-Point Iterative Method for the Colebrook Flow Friction Equation – Numerical Validation

Author(s):  
Pavel Praks ◽  
Dejan Brkić

The Colebrook equation ζ is implicitly given in respect to the unknown flow friction factor λ ;  λ=ζ(Re,ε*,λ) which cannot be expressed explicitly in exact way without simplifications and use of approximate calculus. Common approach to solve it is through the Newton-Raphson iterative procedure or through the fixed-point iterative procedure. Both requires in some case even eight iterations. On the other hand numerous more powerful iterative methods such as three-or two-point methods, etc. are available. The purpose is to choose optimal iterative method in order to solve the implicit Colebrook equation for flow friction accurately using the least possible number of iterations. The methods are thoroughly tested and those which require the least possible number of iterations to reach the accurate solution are identified. The most powerful three-point methods require in worst case only two iterations to reach final solution. The recommended representatives are Sharma-Guha-Gupta, Sharma-Sharma, Sharma-Arora, Džunić-Petković-Petković; Bi-Ren-Wu, Chun-Neta based on Kung-Traub, Neta, and Jain method based on Steffensen scheme. The recommended iterative methods can reach the final accurate solution with the least possible number of iterations. The approach is hybrid between iterative procedure and one-step explicit approximations and can be used in engineering design for initial rough, but also for final fine calculations.

Processes ◽  
2018 ◽  
Vol 6 (8) ◽  
pp. 130 ◽  
Author(s):  
Pavel Praks ◽  
Dejan Brkić

The Colebrook equation is implicitly given in respect to the unknown flow friction factor λ; λ = ζ ( R e , ε * , λ ) which cannot be expressed explicitly in exact way without simplifications and use of approximate calculus. A common approach to solve it is through the Newton–Raphson iterative procedure or through the fixed-point iterative procedure. Both require in some cases, up to seven iterations. On the other hand, numerous more powerful iterative methods such as three- or two-point methods, etc. are available. The purpose is to choose optimal iterative method in order to solve the implicit Colebrook equation for flow friction accurately using the least possible number of iterations. The methods are thoroughly tested and those which require the least possible number of iterations to reach the accurate solution are identified. The most powerful three-point methods require, in the worst case, only two iterations to reach the final solution. The recommended representatives are Sharma–Guha–Gupta, Sharma–Sharma, Sharma–Arora, Džunić–Petković–Petković; Bi–Ren–Wu, Chun–Neta based on Kung–Traub, Neta, and the Jain method based on the Steffensen scheme. The recommended iterative methods can reach the final accurate solution with the least possible number of iterations. The approach is hybrid between the iterative procedure and one-step explicit approximations and can be used in engineering design for initial rough, but also for final fine calculations.


Author(s):  
Nur Afza Mat Ali ◽  
Rostang Rahman ◽  
Jumat Sulaiman ◽  
Khadizah Ghazali

<p>Similarity method is used in finding the solutions of partial differential equation (PDE) in reduction to the corresponding ordinary differential equation (ODE) which are not easily integrable in terms of elementary or tabulated functions. Then, the Half-Sweep Successive Over-Relaxation (HSSOR) iterative method is applied in solving the sparse linear system which is generated from the discretization process of the corresponding second order ODEs with Dirichlet boundary conditions. Basically, this ODEs has been constructed from one-dimensional reaction-diffusion equations by using wave variable transformation. Having a large-scale and sparse linear system, we conduct the performances analysis of three iterative methods such as Full-sweep Gauss-Seidel (FSGS), Full-sweep Successive Over-Relaxation (FSSOR) and HSSOR iterative methods to examine the effectiveness of their computational cost. Therefore, four examples of these problems were tested to observe the performance of the proposed iterative methods.  Throughout implementation of numerical experiments, three parameters have been considered which are number of iterations, execution time and maximum absolute error. According to the numerical results, the HSSOR method is the most efficient iterative method in solving the proposed problem with the least number of iterations and execution time followed by FSSOR and FSGS iterative methods.</p>


Fluids ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 114 ◽  
Author(s):  
Dejan Brkić ◽  
Pavel Praks

Even a relatively simple equation such as Colebrook’s offers a lot of possibilities to students to increase their computational skills. The Colebrook’s equation is implicit in the flow friction factor and, therefore, it needs to be solved iteratively or using explicit approximations, which need to be developed using different approaches. Various procedures can be used for iterative methods, such as single the fixed-point iterative method, Newton–Raphson, and other types of multi-point iterative methods, iterative methods in a combination with Padé polynomials, special functions such as Lambert W, artificial intelligence such as neural networks, etc. In addition, to develop explicit approximations or to improve their accuracy, regression analysis, genetic algorithms, and curve fitting techniques can be used too. In this learning numerical exercise, a few numerical examples will be shown along with the explanation of the estimated pedagogical impact for university students. Students can see what the difference is between the classical vs. floating-point algebra used in computers.


2016 ◽  
Vol 2016 ◽  
pp. 1-18 ◽  
Author(s):  
Grégory Antoni

This paper deals with a new numerical iterative method for finding the approximate solutions associated with both scalar and vector nonlinear equations. The iterative method proposed here is an extended version of the numerical procedure originally developed in previous works. The present study proposes to show that this new root-finding algorithm combined with a stationary-type iterative method (e.g., Gauss-Seidel or Jacobi) is able to provide a longer accurate solution than classical Newton-Raphson method. A numerical analysis of the developed iterative method is addressed and discussed on some specific equations and systems.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1306
Author(s):  
Elsayed Badr ◽  
Sultan Almotairi ◽  
Abdallah El Ghamry

In this paper, we propose a novel blended algorithm that has the advantages of the trisection method and the false position method. Numerical results indicate that the proposed algorithm outperforms the secant, the trisection, the Newton–Raphson, the bisection and the regula falsi methods, as well as the hybrid of the last two methods proposed by Sabharwal, with regard to the number of iterations and the average running time.


Axioms ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 47
Author(s):  
A. Torres-Hernandez ◽  
F. Brambila-Paz ◽  
U. Iturrarán-Viveros ◽  
R. Caballero-Cruz

In the following paper, we present a way to accelerate the speed of convergence of the fractional Newton–Raphson (F N–R) method, which seems to have an order of convergence at least linearly for the case in which the order α of the derivative is different from one. A simplified way of constructing the Riemann–Liouville (R–L) fractional operators, fractional integral and fractional derivative is presented along with examples of its application on different functions. Furthermore, an introduction to Aitken’s method is made and it is explained why it has the ability to accelerate the convergence of the iterative methods, in order to finally present the results that were obtained when implementing Aitken’s method in the F N–R method, where it is shown that F N–R with Aitken’s method converges faster than the simple F N–R.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2610
Author(s):  
Wenzheng Liu ◽  
Qingdong Zeng ◽  
Jun Yao ◽  
Ziyou Liu ◽  
Tianliang Li ◽  
...  

Rock yielding may well take place during hydraulic fracturing in deep reservoirs. The prevailing models based on the linear elastic fracture mechanics (LEFM) are incapable of describing the evolution process of hydraulic fractures accurately. In this paper, a hydro-elasto-plastic model is proposed to investigate the hydraulic fracture propagation in deep reservoirs. The Drucker–Prager plasticity model, Darcy’s law, cubic law and cohesive zone model are employed to describe the plastic deformation, matrix flow, fracture flow and evolution of hydraulic fractures, respectively. Combining the embedded discrete fracture model (EDFM), extended finite element method (XFEM) and finite volume method, a hybrid numerical scheme is presented to carry out simulations. A dual-layer iterative procedure is developed based on the fixed-stress split method, Picard iterative method and Newton–Raphson iterative method. The iterative procedure is used to deal with the coupling between nonlinear deformation with fracture extension and fluid flow. The proposed model is verified against analytical solutions and other numerical simulation results. A series of numerical cases are performed to investigate the influences of rock plasticity, internal friction angle, dilatancy angle and permeability on hydraulic fracture propagation. Finally, the proposed model is extended to simulate multiple hydraulic fracture propagation. The result shows that plastic deformation can enhance the stress-shadowing effect.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 560 ◽  
Author(s):  
Luboš Brim ◽  
Samuel Pastva ◽  
David Šafránek ◽  
Eva Šmijáková

Boolean network (BN) is a simple model widely used to study complex dynamic behaviour of biological systems. Nonetheless, it might be difficult to gather enough data to precisely capture the behavior of a biological system into a set of Boolean functions. These issues can be dealt with to some extent using parametrised Boolean networks (ParBNs), as this model allows leaving some update functions unspecified. In our work, we attack the control problem for ParBNs with asynchronous semantics. While there is an extensive work on controlling BNs without parameters, the problem of control for ParBNs has not been in fact addressed yet. The goal of control is to ensure the stabilisation of a system in a given state using as few interventions as possible. There are many ways to control BN dynamics. Here, we consider the one-step approach in which the system is instantaneously perturbed out of its actual state. A naïve approach to handle control of ParBNs is using parameter scan and solve the control problem for each parameter valuation separately using known techniques for non-parametrised BNs. This approach is however highly inefficient as the parameter space of ParBNs grows doubly exponentially in the worst case. We propose a novel semi-symbolic algorithm for the one-step control problem of ParBNs, that builds on symbolic data structures to avoid scanning individual parameters. We evaluate the performance of our approach on real biological models.


Author(s):  
Jyoti Talwar ◽  
R. K. Mohanty

In this article, we discuss a new smart alternating group explicit method based on off-step discretization for the solution of time dependent viscous Burgers' equation in rectangular coordinates. The convergence analysis for the new iteration method is discussed in details. We compared the results of Burgers' equation obtained by using the proposed iterative method with the results obtained by other iterative methods to demonstrate computationally the efficiency of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document