scholarly journals An Observation on Distribution of Prime Numbers

Author(s):  
Dariush Bahrami

In this research first, a sequence of properties called delta is assigned to each prime number and then examined. Deltas are only dependent on the distribution of prime numbers, so the results obtained for the delta distribution can be considered as a proxy for the distribution of prime numbers. The first observation was that these properties are not unique and different prime numbers may have the same value of delta of a given order. It was found that a small number of deltas cover a large portion of prime numbers, so by recognizing repetitive deltas, the next prime numbers can be predicted with a certain probability, but the most important observation of this study is the normal distribution of deltas. This research has not tried to justify the obtained observations and instead of answering the questions, it seeks to ask the right question.

2021 ◽  
Vol 20 ◽  
pp. 43-59
Author(s):  
Gunnar Appelqvist

My investigation shows that there is a regularity even by the prime numbers. This structure is obvious when a prime square is created. The squared prime numbers. 1. Connections in a prime square A prime square (or origin square) is defined as a square consisting of as many boxes as the origin prim squared. This prime settle every side of the square. So, for example, the origin square 17 have got four sides with 17 boxes along every side. The prime numbers in each of the 289 boxes are filled with primes when a prime number occur in the number series (1,2,3,4,5,6,7,8,9 and so on) and then is noted in that very box. If a box is occupied in the origin square A this prime number could be transferred to the corresponding box in a second square B, and thereafter the counting and noting continue in the first square A. Eventually we get two filled prime squares. Analyzing these squares, you leave out the right vertical line, representing only the origin prime number, When a square is filled with primes you subdivide it into four corner squares, as big as possible, denoted a, b, c and d clockwise. You also get a center line between the left and right vertical sides. Irrespective of what kind of constellation you activate this is what you find: Every constellation in the corner square a and/or d added to a corresponding constellation in the corner square b and/or c is evenly divisible with the origin prime. Every constellation in the corner square a and/or b added to a corresponding constellation in the corner square d and/or c is not evenly divisible with the origin prime. Every reflecting constellation inside two of the opposed diagonal corner squares, possibly summarized with any optional reflecting constellation inside the two other diagonal corner squares, is evenly divisible with the origin prime squared. You may even add a reflection inside the center line and get this result. My Conjecture 1 is that this applies to every prime square without end.   A formula giving all prime numbers endless   In the second prime square the prime numbers are always higher than in the first square if you compare a specific box. There is a mathematic connection between the prime numbers in the first and second square. This connection appears when you square and double the origin prime and thereafter add this number to the prime you investigate. A new higher prime is found after n additions. You start with lowest applicable prime number 3 and its square 3². Double it and you get 18. We add 18 to the six next prime numbers 5, 7, 11, 13, 17 and 19 in any order. After a few adds you get a prime and after another few adds you get another higher one. In this way you continue as long as you want to. The primes are creating themselves. A formula giving all prime numbers is:   5+18×n, +18×n, +18×n … without end   7+18×n, +18×n, +18×n … without end 11+18×n, +18×n, +18×n … without end 13+18×n, +18×n, +18×n … without end 17+18×n, +18×n, +18×n … without end 19+18×n, +18×n, +18×n … without end The letter n in the formula stands for how many 18-adds you must do until the next prime is found. My Conjecture 2 is that this you find every prime number by adding 18 to the primes 5, 7, 11, 13, 17 and 19 one by one endless. A method giving all prime numbers endless  There is still a possibility to even more precise all prime numbers. You start a 5-number series derived from the start primes 7, 17, 19, 11, 13 and 5 in that very order. Factorized these number always begin with number 5. When each of these numbers are divided with five the quotient is either a prime number or a composite number containing of two or some more prime numbers in the nearby. By sorting out all the composite quotients you get all the prime numbers endless and in order. Every composite quotient starts with a prime from 5 and up, squared. Thereafter the quotients starting with that prime show up periodically according to a pattern of short and long sequences. The position for each new prime beginning the composite quotient is this prime squared and multiplied with 5. Thereafter the short sequence is this prime multiplied with 10, while the long sequence is this prime multiplied with 20. When all the composite quotients are deleted there are left several 5-numbers which divided with 5 give all prime numbers, and you even see clearly the distance between the prime numbers which for instance explain why the prime twins occur as they do. My Conjecture 3 is that this is an exact method giving all prime numbers endless and in order.


2021 ◽  
Author(s):  
Xie Ling

Abstract n continuous prime numbers can combine a group of continuous even numbers. If an adjacent prime number is followed, the even number will continue. For example, if we take prime number 3, we can get even number 6. If we follow an adjacent prime number 5, we can get even numbers by using 3 and 5: 6, 8 and 10. If a group of continuous prime numbers 3,5,7,11,... P, we can get a group of continuous even numbers 6,8,10,12,..., 2n. Then if an adjacent prime number q is followed, the original group of even numbers 6,8,10,12,..., 2n will be finitely extended to 2 (n + 1) or more adjacent even numbers. My purpose is to prove that the continuity of prime numbers will lead to even continuity as long as 2 (n + 1) can be extended. If the continuity of even numbers is discontinuous, it violates the Bertrand Chebyshev theorem of prime numbers. Because there are infinitely many prime numbers: 3, 5, 7, 11,... We can get infinitely many continuous even numbers: 6,8,10,12,...


2021 ◽  
Author(s):  
Xie Ling

Abstract n continuous prime numbers can combine a group of continuous even numbers. If an adjacent prime number is followed, the even number will continue. For example, if we take prime number 3, we can get even number 6. If we follow an adjacent prime number 5, we can get even numbers by using 3 and 5: 6, 8 and 10. If a group of continuous prime numbers 3,5,7,11,... P, we can get a group of continuous even numbers 6,8,10,12,..., 2n. Then if an adjacent prime number q is followed, the original group of even numbers 6,8,10,12,..., 2n will be finitely extended to 2 (n + 1) or more adjacent even numbers. My purpose is to prove that the continuity of prime numbers will lead to even continuity as long as 2 (n + 1) can be extended. If the continuity of even numbers is discontinuous, it violates the Bertrand Chebyshev theorem of prime numbers. Because there are infinitely many prime numbers: 3, 5, 7, 11,... We can get infinitely many continuous even numbers: 6,8,10,12,...


2020 ◽  
Vol 8 (2) ◽  
pp. 113-120
Author(s):  
Aminudin Aminudin ◽  
Gadhing Putra Aditya ◽  
Sofyan Arifianto

This study aims to analyze the performance and security of the RSA algorithm in combination with the key generation method of enhanced and secured RSA key generation scheme (ESRKGS). ESRKGS is an improvement of the RSA improvisation by adding four prime numbers in the property embedded in key generation. This method was applied to instant messaging using TCP sockets. The ESRKGS+RSA algorithm was designed using standard RSA development by modified the private and public key pairs. Thus, the modification was expected to make it more challenging to factorize a large number n into prime numbers. The ESRKGS+RSA method required 10.437 ms faster than the improvised RSA that uses the same four prime numbers in conducting key generation processes at 1024-bit prime number. It also applies to the encryption and decryption process. In the security testing using Fermat Factorization on a 32-bit key, no prime number factor was found. The test was processed for 15 hours until the test computer resource runs out.


2019 ◽  
Vol 15 (05) ◽  
pp. 1037-1050
Author(s):  
Erik R. Tou

The mathematics of juggling emerged after the development of siteswap notation in the 1980s. Consequently, much work was done to establish a mathematical theory that describes and enumerates the patterns that a juggler can (or would want to) execute. More recently, mathematicians have provided a broader picture of juggling sequences as an infinite set possessing properties similar to the set of positive integers. This theoretical framework moves beyond the physical possibilities of juggling and instead seeks more general mathematical results, such as an enumeration of juggling patterns with a fixed period and arbitrary number of balls. One problem unresolved until now is the enumeration of primitive juggling sequences, those fundamental juggling patterns that are analogous to the set of prime numbers. By applying analytic techniques to previously-known generating functions, we give asymptotic counting theorems for primitive juggling sequences, much as the prime number theorem gives asymptotic counts for the prime positive integers.


Author(s):  
V. S. Malakhovsky

It is shown how to define one or several prime numbers following af­ter given prime number without using computer only by calculating sev­eral arithmetic progressions. Five examples of finding such prime num­bers are given.


2002 ◽  
Vol 8 (2) ◽  
pp. 70-76
Author(s):  
Jeffrey J. Wanko ◽  
Christine Hartley Venable

Middle school students learn about patterns, formulas, and large numbers motivated by a search for the largest prime number. Activities included.


2013 ◽  
Vol 156 (2) ◽  
pp. 281-294
Author(s):  
TSUYOSHI ITOH ◽  
YASUSHI MIZUSAWA

AbstractFor an odd prime number p and a finite set S of prime numbers congruent to 1 modulo p, we consider the Galois group of the maximal pro-p-extension unramified outside S over the ${\mathbb Z}_p$-extension of the rational number field. In this paper, we classify all S such that the Galois group is a metacyclic pro-p group.


2011 ◽  
Vol 5 (1) ◽  
pp. 87-92 ◽  
Author(s):  
Horst Alzer ◽  
Jozsef Sandor

Let Pn be the n-th prime number. We prove the following double-inequality. For all integers k?5 we have exp[k(c0?loglogk)]? k2 k/p1?p2?...?pk ? exp[k(c1?loglogk)] with the best possible constants c0 = 1/5 log23 + loglog5=1:10298? and c1 = 1/192log(36864/192)+loglog 192?1/192log(p1?p2???p192)=2.04287... This reffines a result published by Gupta and Khare in 1977.


Sign in / Sign up

Export Citation Format

Share Document