About finding of prime numbers that follows after given prime number without using computer

Author(s):  
V. S. Malakhovsky

It is shown how to define one or several prime numbers following af­ter given prime number without using computer only by calculating sev­eral arithmetic progressions. Five examples of finding such prime num­bers are given.

Author(s):  
Artūras Dubickas ◽  
Lukas Jonuška

A finite set of prime numbers [Formula: see text] is called unavoidable with respect to [Formula: see text] if for each [Formula: see text] the sequence of integer parts [Formula: see text], [Formula: see text] contains infinitely many elements divisible by at least one prime number [Formula: see text] from the set [Formula: see text]. It is known that an unavoidable set exists with respect to [Formula: see text] and that it does not exist if [Formula: see text] is an integer such that [Formula: see text] is not square free. In this paper, we show that no finite unavoidable sets exist with respect to [Formula: see text] if [Formula: see text] is a prime number or [Formula: see text] belongs to some explicitly given arithmetic progressions, for instance, [Formula: see text] and [Formula: see text], [Formula: see text]


2021 ◽  
Author(s):  
Xie Ling

Abstract n continuous prime numbers can combine a group of continuous even numbers. If an adjacent prime number is followed, the even number will continue. For example, if we take prime number 3, we can get even number 6. If we follow an adjacent prime number 5, we can get even numbers by using 3 and 5: 6, 8 and 10. If a group of continuous prime numbers 3,5,7,11,... P, we can get a group of continuous even numbers 6,8,10,12,..., 2n. Then if an adjacent prime number q is followed, the original group of even numbers 6,8,10,12,..., 2n will be finitely extended to 2 (n + 1) or more adjacent even numbers. My purpose is to prove that the continuity of prime numbers will lead to even continuity as long as 2 (n + 1) can be extended. If the continuity of even numbers is discontinuous, it violates the Bertrand Chebyshev theorem of prime numbers. Because there are infinitely many prime numbers: 3, 5, 7, 11,... We can get infinitely many continuous even numbers: 6,8,10,12,...


2021 ◽  
Author(s):  
Xie Ling

Abstract n continuous prime numbers can combine a group of continuous even numbers. If an adjacent prime number is followed, the even number will continue. For example, if we take prime number 3, we can get even number 6. If we follow an adjacent prime number 5, we can get even numbers by using 3 and 5: 6, 8 and 10. If a group of continuous prime numbers 3,5,7,11,... P, we can get a group of continuous even numbers 6,8,10,12,..., 2n. Then if an adjacent prime number q is followed, the original group of even numbers 6,8,10,12,..., 2n will be finitely extended to 2 (n + 1) or more adjacent even numbers. My purpose is to prove that the continuity of prime numbers will lead to even continuity as long as 2 (n + 1) can be extended. If the continuity of even numbers is discontinuous, it violates the Bertrand Chebyshev theorem of prime numbers. Because there are infinitely many prime numbers: 3, 5, 7, 11,... We can get infinitely many continuous even numbers: 6,8,10,12,...


2020 ◽  
Vol 8 (2) ◽  
pp. 113-120
Author(s):  
Aminudin Aminudin ◽  
Gadhing Putra Aditya ◽  
Sofyan Arifianto

This study aims to analyze the performance and security of the RSA algorithm in combination with the key generation method of enhanced and secured RSA key generation scheme (ESRKGS). ESRKGS is an improvement of the RSA improvisation by adding four prime numbers in the property embedded in key generation. This method was applied to instant messaging using TCP sockets. The ESRKGS+RSA algorithm was designed using standard RSA development by modified the private and public key pairs. Thus, the modification was expected to make it more challenging to factorize a large number n into prime numbers. The ESRKGS+RSA method required 10.437 ms faster than the improvised RSA that uses the same four prime numbers in conducting key generation processes at 1024-bit prime number. It also applies to the encryption and decryption process. In the security testing using Fermat Factorization on a 32-bit key, no prime number factor was found. The test was processed for 15 hours until the test computer resource runs out.


2008 ◽  
Vol 78 (3) ◽  
pp. 431-436 ◽  
Author(s):  
XUE-GONG SUN ◽  
JIN-HUI FANG

AbstractErdős and Odlyzko proved that odd integers k such that k2n+1 is prime for some positive integer n have a positive lower density. In this paper, we characterize all arithmetic progressions in which natural numbers that can be expressed in the form (p−1)2−n (where p is a prime number) have a positive proportion. We also prove that an arithmetic progression consisting of odd numbers can be obtained from a covering system if and only if those integers in such a progression which can be expressed in the form (p−1)2−n have an asymptotic density of zero.


2000 ◽  
Vol 157 ◽  
pp. 103-127 ◽  
Author(s):  
Ti Zuo Xuan

For real x ≥ y ≥ 2 and positive integers a, q, let Φ(x, y; a, q) denote the number of positive integers ≤ x, free of prime factors ≤ y and satisfying n ≡ a (mod q). By the fundamental lemma of sieve, it follows that for (a,q) = 1, Φ(x,y;a,q) = φ(q)-1, Φ(x, y){1 + O(exp(-u(log u- log2 3u- 2))) + (u = log x log y) holds uniformly in a wider ranges of x, y and q.Let χ be any character to the modulus q, and L(s, χ) be the corresponding L-function. Let be a (‘exceptional’) real character to the modulus q for which L(s, ) have a (‘exceptional’) real zero satisfying > 1 - c0/log q. In the paper, we prove that in a slightly short range of q the above first error term can be replaced by where ρ(u) is Dickman function, and ρ′(u) = dρ(u)/du.The result is an analogue of the prime number theorem for arithmetic progressions. From the result can deduce that the above first error term can be omitted, if suppose that 1 < q < (log q)A.


2019 ◽  
Vol 15 (05) ◽  
pp. 1037-1050
Author(s):  
Erik R. Tou

The mathematics of juggling emerged after the development of siteswap notation in the 1980s. Consequently, much work was done to establish a mathematical theory that describes and enumerates the patterns that a juggler can (or would want to) execute. More recently, mathematicians have provided a broader picture of juggling sequences as an infinite set possessing properties similar to the set of positive integers. This theoretical framework moves beyond the physical possibilities of juggling and instead seeks more general mathematical results, such as an enumeration of juggling patterns with a fixed period and arbitrary number of balls. One problem unresolved until now is the enumeration of primitive juggling sequences, those fundamental juggling patterns that are analogous to the set of prime numbers. By applying analytic techniques to previously-known generating functions, we give asymptotic counting theorems for primitive juggling sequences, much as the prime number theorem gives asymptotic counts for the prime positive integers.


Sign in / Sign up

Export Citation Format

Share Document