scholarly journals Effect of concentric and eccentric porous layer on forced convection heat transfer and fluid flow around a solid cylinder

Author(s):  
Alireza Alinezhad ◽  
Ataallah Soltani Goharrizi ◽  
Ataallah Kamyabi

Abstract In this paper, heat transfer and fluid flow around a solid cylinder wrapped with a porous layer in the channel were studied numerically by computational fluid dynamics (CFD). The homogeneous concentric and eccentric porous medium round a rigid, solid cylinder are supposed at local thermal equilibrium. The transport phenomena within the porous layer, volume averaged equations were employed, however the conservation laws of mass, momentum and energy were applied in the channel. This current numerical analysis, the effects of eccentricity ( ), the variable diameter of porous layer (d=0.07,0.08,0.09), permeability, as well as the different Reynolds number and Darcy number on the heat transfer parameters and fluid flow was investigated. The main purpose of this study is analyzed and compared the heat flux of concentric and eccentric porous layer in Reynolds number range of 1 to 40 and Darcy numbers of to . It is found that with the decline of Darcy number, the vortex length is increased behind the solid cylinder surface. In addition, the heat flux rate of the cylinder is raised with the increase of Reynolds number. Finally, The results have demonstrated that with raising Reynolds and Darcy numbers, the increase of the average Nusselt numbers in the eccentric porous layer is higher than the concentric porous layer.

2018 ◽  
Vol 141 (1) ◽  
Author(s):  
M. Mohammadpour-Ghadikolaie ◽  
M. Saffar-Avval ◽  
Z. Mansoori ◽  
N. Alvandifar ◽  
N. Rahmati

Laminar forced convection heat transfer from a constant temperature tube wrapped fully or partially by a metal porous layer and subjected to a uniform air cross-flow is studied numerically. The main aim of this study is to consider the thermal performance of some innovative arrangements in which only certain parts of the tube are covered by metal foam. The combination of Navier–Stokes and Darcy–Brinkman–Forchheimer equations is applied to evaluate the flow field. Governing equations are solved using the finite volume SIMPLEC algorithm and the effects of key parameters such as Reynolds number, metal foam thermophysical properties, and porous layer thickness on the Nusselt number are investigated. The results show that using a tube which is fully wrapped by an external porous layer with high thermal conductivity, high Darcy number, and low drag coefficient, can provide a high heat transfer rate in the high Reynolds number laminar flow, increasing the Nusselt number almost as high as 16 times compared to a bare tube. The most important result of thisstudy is that by using some novel arrangements in which the tube is partially covered by the foam layer, the heat transfer rate can be increased at least 20% in comparison to the fully wrapped tube, while the weight and material usage can be considerably reduced.


Author(s):  
Yan Wang ◽  
Xiang Ling

The heat transfer performance of fluid flowing in a microchannel was experimentally studied, to meet the requirement of extremely high heat flux removal of microelectronic devices. There were 10 parallel microchannels with rectangular cross-section in the stainless steel plate, which was covered by a glass plate to observe the fluid flowing behavior, and another heating plate made of aluminum alloy was positioned behind the microchannel. Single phase heat transfer and fluid flow downstream the microchannel experiments were conducted with both deionized water and ethanol. Besides experiments, numerical models were also set up to make a comparison with experimental results. It is found that the pressure drop increases rapidly with enlarging Reynolds number (200), especially for ethanol. With comparison, the flow resistance of pure water is smaller than ethanol. Results also show that the friction factor decreases with Reynolds number smaller than the critical value, while increases the velocity, the friction factor would like to keep little changed. We also find that the water friction factors obtained by CFD simulations in parallel microchannels are much larger than experiment results. With heat flux added to the fluid, the heat transfer performance can be enhanced with larger Re number and the temperature rise could be weaken. Compared against ethanol, water performed much better for heat removal. However, with intensive heat flux, both water and ethanol couldn’t meet the requirement and the temperature at outlet would increase remarkably, extremely for ethanol. These findings would be helpful for thermal management design and optimization.


1972 ◽  
Vol 94 (1) ◽  
pp. 7-14 ◽  
Author(s):  
L. B. Newman ◽  
E. M. Sparrow ◽  
E. R. G. Eckert

Experiments involving both heat-transfer and turbulence-field measurements were performed to determine the influence of free-stream turbulence on the local heat transfer from a sphere situated in a forced-convection airflow. The research was facilitated by a miniature heat-flux sensor which could be positioned at any circumferential location on the equator of the sphere. Turbulence grids were employed to generate free-stream turbulence with intensities of up to 9.4 percent. The Reynolds-number range of the experiments was from 20,000 to 62,000. The results indicate that the local heat flux in the forward region of the sphere is uninfluenced by free-stream turbulence levels of up to about 5 percent. For higher turbulence levels, the heat-flux increases with the turbulence intensity, the greatest heat-flux augmentation found here being about 15 percent. Furthermore, at the higher turbulence intensities, there appears to be a departure from the half-power Reynolds-number dependence of the stagnation-point Nusselt number. Turbulent separation occurred at Reynolds numbers of 42,000 and 62,000 for a turbulence level of 9.4 percent, these values being well below the transition Reynolds number of 2 × 105 for a sphere situated in a low-turbulence flow.


2021 ◽  
Vol 39 (3) ◽  
pp. 817-824
Author(s):  
Ameer Abed Jaddoa

This paper analyzes the effect of fluid flow characteristics on the convection heat transfer for mini-helically coiled tubes (HCT) using supercritical carbon dioxide (CO2) as a natural refrigerant. Two experimental cases have studied in this work for mini-helically coiled tubes at different diameters with different coil pitches for analyzing the convection heat transfer with flow resistance. In the first case, the inner tube diameter, coil diameter and coil pitch were 5 mm, 200 mm and 10 mm respectively, while 10 mm, 100 mm and 5 mm were for the second case. Moreover, this work has also investigated the influence of frictional pressure drop, heat flux, friction factor and mass flux on dimensionless exergy destruction. The work environments were 300-500 K as an inlet temperatures range, 200-2000 Kg / (m2. s) as a mass heat fluxes range, 50,000-500,000 as a Reynolds number (Re) range and 50-200 Kw/m2 as an inner heat fluxes range. As a result, a large effect has been observed for dimensionless exergy destruction compared with the flow friction of CO2 which induced by heat transfer irreversibility. On the other point of view, a good sensitivity of optimal Re with the tube dimeter and mass flux also noticed compared with the heat flux. At a suitable range for Re, smallest and best exergy destruction also noticed for the tube diameters. A correlation has for the optimal Reynolds number as function of main dimensionless parameters related to wall heat flux, mass flux, fluid properties and geometric dimensions is proposed. Characteristics of the fluid flow had influenced significantly by mass and heat fluxes. In the future, the collected experimental data can be employed in order to design and improve the refrigeration conditioning performance for exchangers and other systems such as heat pumps.


1999 ◽  
Vol 121 (3) ◽  
pp. 202-208 ◽  
Author(s):  
Y. Asako ◽  
Y. Yamaguchi ◽  
M. Faghri

Three-dimensional numerical analysis, for transitional characteristics of fluid flow and heat transfer in periodic fully developed region of an array of the heated square blocks deployed along one wall of the parallel plates duct, is carried out by using Lam-Bremhorst low-Reynolds-number two equation turbulence model. Computations were performed for Prandtl number of 0.7, in the Reynolds number range of 200 to 2000 and for two sets of geometric parameters characterizing the array. The predicted transitional Reynolds number is lower than the value for the parallel plate duct and it decreases with increasing the height above the module. Experiments were also performed for pressure drop measurements and for flow visualization and the results were compared with the numerical predictions.


2016 ◽  
Vol 138 (6) ◽  
Author(s):  
Amin Davari ◽  
Mehdi Maerefat

In the present study, analysis of fluid flow and heat transfer in the entrance and periodically fully developed regions of a channel with porous baffles is numerically studied. The Navier–Stokes and Brinkman–Forchheimer equations are used to model the fluid flow in the open and porous regions. The flow is assumed to be laminar. A finite-volume based method in conjunction with the SIMPLE algorithm is used to solve the equations. The local thermal equilibrium model is adopted in the energy equation to evaluate the solid and fluid temperatures. The effects of parameters such as baffle height, baffle spacing, Reynolds number, and thermal conductivity ratio between the porous baffles and the fluid on the flow field and local heat transfer rate are studied at relatively low and high values of Darcy number. Results show that local heat transfer coefficient significantly depends on the formation and variation of the recirculation caused by the porous baffles, such that, in the cases where use of porous baffles leads to recirculation zone, the local Nusselt number in the entrance region would be less than that of the fully developed region. It is also shown that heat transfer performance ratio is significantly improved for high Prandtl number fluids.


2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Shobhana Singh ◽  
Kim Sørensen ◽  
Thomas Condra

In the present work, a numerical analysis of conjugate heat transfer and fluid flow in vortex generator (VG) enhanced double-fin and tube heat exchanger is carried out. The enhanced design aims to improve the heat transfer performance of a conventional double-fin and tube heat exchanger for waste heat recovery applications. A three-dimensional (3D) numerical model is developed using ANSYS cfx to simulate fluid flow and conjugate heat transfer process. Numerical simulations with rectangular winglet vortex generators (RWVGs) at five different angles of attack (−20deg≤α≤20deg) are performed for the Reynolds number range of 5000≤Re≤11,000. Salient performance characteristics are analyzed in addition to the temperature distribution and flow fields. Based on the numerical results, it is concluded that the overall performance of the double-fin and tube heat exchanger can be improved by 27–91% by employing RWVGs at α=−20deg for the range of Reynolds number investigated. The study provides useful design information and necessary performance data that can be adopted for the design development of the heat exchanger at a lower manufacturing cost.


2002 ◽  
Vol 124 (4) ◽  
pp. 746-753 ◽  
Author(s):  
A. Nakayama ◽  
F. Kuwahara ◽  
T. Umemoto ◽  
T. Hayashi

A numerical experiment at a pore scale using a full set of Navier-Stokes and energy equations has been conducted to simulate laminar fluid flow and heat transfer through an anisotropic porous medium. A collection of square rods placed in an infinite two-dimensional space has been proposed as a numerical model of microscopic porous structure. The degree of anisotropy was varied by changing the transverse center-to-center distance with the longitudinal center-to-center distance being fixed. Extensive calculations were carried out for various sets of the macroscopic flow angle, Reynolds number and degree of anisotropy. The numerical results thus obtained were integrated over a space to determine the permeability tensor, Forchheimer tensor and directional interfacial heat transfer coefficient. It has been found that the principal axes of the permeability tensor (which controls the viscous drag in the low Reynolds number range) differ significantly from those of the Forchheimer tensor (which controls the form drag in the high Reynolds number range), The study also reveals that the variation of the directional interfacial heat transfer coefficient with respect to the macroscopic flow angle is analogous to that of the directional permeability. Simple subscale model equations for the permeability tensor, Forchheimer tensor and directional Nusselt number have been proposed for possible applications of VAT to investigate flow and heat transfer within complex heat and fluid flow equipment consisting of small scale elements.


2012 ◽  
Vol 605-607 ◽  
pp. 1350-1355
Author(s):  
Xin Wei Lu ◽  
De Zhi Yang ◽  
Wen Jiong Cao ◽  
Zhao Yao Zhou

Convection heat transfer in a plate channel periodically fitted with sintered copper porous ribs attached to a copper plate was numerically studied. The local thermal equilibrium model was adopted in the energy equation to evaluate the temperature of fluid and solid. The effect of porosity, Reynolds number and heat flux applied to the copper plate on the heat transfer characteristic of the porous media was investigated respectively. The numerical results show that the heat transfer can be enhanced by increasing Reynolds number, decreasing the porosity and the heat transfer enhancement of the porous media took effect significantly when subjected to high heat flux. Detailed development of the porous media temperature field and the Nusselt number of the wall as a function of Reynolds number for different porosity and heat flux were also presented.


1979 ◽  
Vol 101 (2) ◽  
pp. 199-204 ◽  
Author(s):  
E. M. Sparrow ◽  
J. W. Ramsey ◽  
E. A. Mass

Wind tunnel experiments were performed to study the heat transfer and fluid flow characteristics for finite-width rectangular plates inclined at various angles of attack to an oncoming airflow. Plates having ratios of spanwise width to streamwise length of 0.4 and 2.5 were employed, and the angle of attack was varied from 90 deg (normal incidence) to 25 deg. The Reynolds number range extended from about 20,000 to 90,000. The naphthalene sublimation technique was used in the transfer coefficient determinations, and the fluid flow patterns adjacent to the plate were made visible by the oil/lampblack technique. The flow field was found to be highly complex and three dimensional, with stronger three-dimensional effects in evidence for the narrow plate. A stagnation zone, centered in the plate cross section at normal incidence, moved forward and ultimately disappeared as the plate was inclined at smaller angles of attack. The dimensionless heat (mass) transfer coefficient, expressed in terms of the Colburn j-factor, varied as the square root of the Reynolds number for all angles of attack, both for the narrow and the wider plates. For the wider plate, the transfer coefficients are completely independent of the angle of attack in the range investigated, while for the narrow plate there is an overall variation of twenty percent. An algebraically simple correlation of all the results, accurate to ± 10 percent, is given to facilitate their use in applications such as the wind-related heat loss from flat plate solar collectors.


Sign in / Sign up

Export Citation Format

Share Document