An alternative model of gravitational forces in nature using the combined effects of repulsion and attraction forces on gaseous molecules
Abstract Laboratory experiments and natural phenomena investigations in this research series experimentally revealed the existence of gravitational repulsion force dependent on thermal energy content, pervading our surroundings both microscopically and macroscopically. This paper presents an alternative mathematical model of both gravitational repulsion and attraction forces between two gaseous molecules, validated by experimental data. The model is self-standing and independent of existing models built on idealistic assumptions. While existing models considered gravitational interaction as a single force, the presented experimental model considers it the resultant of two distinct forces: gravitational repulsion and attraction. When established experimental data on nitrogen, hydrogen, oxygen, water vapor, carbon monoxide and carbon dioxide were applied, the model performed, both analytically and experimentally: (1) confirming the existence of both gravitational repulsion and attraction forces among gas molecules, (2) demonstrating that the two forces follow Inverse-Cube relationship with the distance between molecules, (3) revealing that repulsion force is linearly proportional to the absolute temperature, thus filling the critical gap between energy and fundamental forces. Orders of magnitude of gravitational repulsion and attraction forces are very large compared to the gravitational force between gas molecules calculated according to the classical theory, enabling manipulation to achieve hitherto unknown outcomes and developments.