scholarly journals Transcription Factor Control of Dendrite Targeting via Combinatorial Cell-Surface Codes

Author(s):  
Liqun Luo ◽  
Qijing Xie ◽  
Jiefu Li ◽  
Hongjie Li ◽  
Namrata Udeshi ◽  
...  

Abstract Transcription factors are central commanders specifying cell fate, morphology, and physiology while cell-surface proteins execute these commands through interaction with cellular environment. In developing neurons, it is presumed that transcription factors control wiring specificity through regulation of cell-surface protein expression. However, the number and identity of cell-surface protein(s) a transcription factor regulates remain largely unclear1,2. Also unknown is whether a transcription factor regulates the same or different cell-surface proteins in different neuron types to specify their connectivity. Here we use a lineage-defining transcription factor, Acj6 (ref. 3), to investigate how it controls precise dendrite targeting of Drosophila olfactory projection neurons (PNs). Quantitative cell-surface proteomic profiling of wild-type and acj6 mutant PNs in intact developing brains and a proteome-informed genetic screen identified PN surface proteins that execute Acj6-regulated wiring decisions. These include canonical cell adhesion proteins and proteins previously not associated with wiring, such as the mechanosensitive ion channel Piezo—whose channel activity is dispensable for its wiring function. Comprehensive genetic analyses revealed that Acj6 employs unique sets of cell-surface proteins in different PN types for dendrite targeting. Combinatorial expression of Acj6 wiring executors rescued acj6 mutant phenotypes with higher efficacy and breadth than expression of individual executors. Thus, a key transcription factor controls wiring specificity of different neuron types by specifying distinct combinatorial expression of cell-surface executors.

2021 ◽  
Author(s):  
Qijing Xie ◽  
Jiefu Li ◽  
Hongjie Li ◽  
Namrata D Udeshi ◽  
Tanya Svinkina ◽  
...  

Transcription factors are central commanders specifying cell fate, morphology, and physiology while cell-surface proteins execute these commands through interaction with cellular environment. In developing neurons, it is presumed that transcription factors control wiring specificity through regulation of cell-surface protein expression. However, the number and identity of cell-surface protein(s) a transcription factor regulates remain largely unclear1,2. Also unknown is whether a transcription factor regulates the same or different cell-surface proteins in different neuron types to specify their connectivity. Here we use a lineage-defining transcription factor, Acj6 (ref. 3), to investigate how it controls precise dendrite targeting of Drosophila olfactory projection neurons (PNs). Quantitative cell-surface proteomic profiling of wild-type and acj6 mutant PNs in intact developing brains and a proteome-informed genetic screen identified PN surface proteins that execute Acj6-regulated wiring decisions. These include canonical cell adhesion proteins and proteins previously not associated with wiring, such as the mechanosensitive ion channel Piezo–whose channel activity is dispensable for its wiring function. Comprehensive genetic analyses revealed that Acj6 employs unique sets of cell-surface proteins in different PN types for dendrite targeting. Combinatorial expression of Acj6 wiring executors rescued acj6 mutant phenotypes with higher efficacy and breadth than expression of individual executors. Thus, a key transcription factor controls wiring specificity of different neuron types by specifying distinct combinatorial expression of cell-surface executors.


2018 ◽  
Vol 115 (46) ◽  
pp. E10988-E10997 ◽  
Author(s):  
Damaris Bausch-Fluck ◽  
Ulrich Goldmann ◽  
Sebastian Müller ◽  
Marc van Oostrum ◽  
Maik Müller ◽  
...  

Cell-surface proteins are of great biomedical importance, as demonstrated by the fact that 66% of approved human drugs listed in the DrugBank database target a cell-surface protein. Despite this biomedical relevance, there has been no comprehensive assessment of the human surfaceome, and only a fraction of the predicted 5,000 human transmembrane proteins have been shown to be located at the plasma membrane. To enable analysis of the human surfaceome, we developed the surfaceome predictor SURFY, based on machine learning. As a training set, we used experimentally verified high-confidence cell-surface proteins from the Cell Surface Protein Atlas (CSPA) and trained a random forest classifier on 131 features per protein and, specifically, per topological domain. SURFY was used to predict a human surfaceome of 2,886 proteins with an accuracy of 93.5%, which shows excellent overlap with known cell-surface protein classes (i.e., receptors). In deposited mRNA data, we found that between 543 and 1,100 surfaceome genes were expressed in cancer cell lines and maximally 1,700 surfaceome genes were expressed in embryonic stem cells and derivative lines. Thus, the surfaceome diversity depends on cell type and appears to be more dynamic than the nonsurface proteome. To make the predicted surfaceome readily accessible to the research community, we provide visualization tools for intuitive interrogation (wlab.ethz.ch/surfaceome). The in silico surfaceome enables the filtering of data generated by multiomics screens and supports the elucidation of the surfaceome nanoscale organization.


2019 ◽  
Author(s):  
Kaushiki P. Menon ◽  
Vivek Kulkarni ◽  
Shin-ya Takemura ◽  
Michael Anaya ◽  
Kai Zinn

ABSTRACTDrosophila R7 UV photoreceptors (PRs) are divided into yellow (y) and pale (p) subtypes with different wavelength sensitivities. yR7 PRs express the Dpr11 cell surface protein and are presynaptic to Dm8 amacrine neurons (yDm8) that express Dpr11’s binding partner DIP-γ, while pR7 PRs synapse onto DIP-γ-negative pDm8 neurons. Dpr11 and DIP-γ expression patterns define yellow and pale medulla color vision circuits that project to higher-order areas. DIP- γ and dpr11 mutations affect the morphology of yDm8 arbors in the yellow circuit. yDm8 neurons are generated in excess during development and compete for presynaptic yR7 partners. Transsynaptic interactions between Dpr11 and DIP-γ are required for generation of neurotrophic signals that allow yDm8 neurons to survive. yDm8 and pDm8 neurons do not normally compete for neurotrophic support, but can be forced to do so by manipulating R7 subtype fates. DIP-γ-Dpr11 interactions allow yDm8 neurons to select yR7 PRs as their home column partners.


Blood ◽  
2010 ◽  
Vol 116 (13) ◽  
pp. e26-e34 ◽  
Author(s):  
Andreas Hofmann ◽  
Bertran Gerrits ◽  
Alexander Schmidt ◽  
Thomas Bock ◽  
Damaris Bausch-Fluck ◽  
...  

Abstract Immunophenotyping by flow cytometry or immunohistochemistry is a clinical standard procedure for diagnosis, classification, and monitoring of hematologic malignancies. Antibody-based cell surface phenotyping is commonly limited to cell surface proteins for which specific antibodies are available and the number of parallel measurements is limited. The resulting limited knowledge about cell surface protein markers hampers early clinical diagnosis and subclassification of hematologic malignancies. Here, we describe the mass spectrometry based phenotyping of 2 all-trans retinoic acid treated acute myeloid leukemia model systems at an unprecedented level to a depth of more than 500 membrane proteins, including 137 bona fide cell surface exposed CD proteins. This extensive view of the leukemia surface proteome was achieved by developing and applying new implementations of the Cell Surface Capturing (CSC) technology. Bioinformatic and hierarchical cluster analysis showed that the applied strategy reliably revealed known differentiation-induced abundance changes of cell surface proteins in HL60 and NB4 cells and it also identified cell surface proteins with very little prior information. The extensive and quantitative analysis of the cell surface protein landscape from a systems biology perspective will be most useful in the clinic for the improved subclassification of hematologic malignancies and the identification of new drug targets.


2009 ◽  
Vol 21 (1) ◽  
pp. 241
Author(s):  
K. J. Williams ◽  
R. A. Godke ◽  
K. R. Bondioli

Human adipose tissue-derived adult stem (ADAS) cells are a self-renewing population of cells with a multilineage plasticity similar to bone marrow-derived mesenchymal stem cells. Human ADAS have promise for use in combination with various biomaterials for reconstructive tissue engineering. The phenotypic profile of human ADAS cell surface proteins has been partially characterized for stem cell-associated cluster differentiation molecules including CD29, CD44, and CD90. Porcine ADAS cells, an animal model for tissue engineering, also have the ability to self-renew and differentiate into multiple tissue lineages. However, the surface protein phenotype has not been described. Because porcine ADAS are isolated from fat depots likely different from human ADAS liposuction aspirates, it is important to characterize these cells. In this study, we have partially characterized the surface protein phenotype of undifferentiated porcine ADAS cells in comparison with the immunophenotype of undifferentiated human ADAS cells as reported in the literature. Flow cytometry and enhanced chemiluminescence Western blot analysis of early passage (passages 0–4) porcine ADAS cell populations demonstrated that the profiles are not similar to the human ADAS cell surface. Immunoblot detection paired with an enhanced chemiluminescence kit revealed a positive expression for CD44 and CD90 in human ADAS cells as indicated by bands present at the expected sizes and a negative expression for CD44 and CD90 in porcine ADAS cells. Flow cytometric analysis also indicated differences between human and early passage porcine ADAS cell surfaces with a relatively low expression of CD29 (5 cell lines with a mean percent positive of 4.5 ± 1.7 and a range of 2.5–7.2%) and CD44 (5 cell lines with a mean percent positive of 0.66 ± 0.67 and a range of 0.0–1.8%) compared with human ADAS values of 98 ± 1 and 60 ± 15, respectively (Gronthos et al. 2001). Other cell surface proteins analyzed at early passages include CD3 (3 cell lines; 0.07 ± 0.06% positive and 0.0–0.1 range), CD8 (3 cell lines; 0.10 ± 0.10% positive and 0–0.2 range), and CD90 [5 cell lines; 12.7 ± 11.9% positive and 2.4–33 range; human ADAS geometric mean 25.96% (Zuk et al. 2002)]. Analysis of late passage (passages 5–11) porcine ADAS cell populations revealed an increased expression of CD29 (3 cell lines; 26.4 ± 7.2% positive and 21.2–34.6 range). The expression level of CD90 at late passages were 21.3 and 26.9% positive for 2 cell lines and CD44 remained low (3 cell lines; 4.1 ± 3.5% positive and 0.2–7.0 range). Later passages were also analyzed for c-Kit (CD117), which was expressed at low levels (2 cell lines; 0.3 and 0.4% positive). The characterization of adipose tissue-derived adult stem cell surface proteins present at different stages of in vitro culture from a model animal, such as the pig, could have valuable impacts on tissue engineering research. These results suggest that care should be taken when interpreting results from animal models of somatic stem cells.


2010 ◽  
Vol 21 (4) ◽  
pp. 674-685 ◽  
Author(s):  
Hirofumi Takada ◽  
Aiko Nishida ◽  
Mitsuhiro Domae ◽  
Ayako Kita ◽  
Yuki Yamano ◽  
...  

The highly conserved fission yeast Pmk1 MAPK pathway plays a key role in cell integrity by regulating Atf1, which belongs to the ATF/cAMP-responsive element-binding (CREB) protein family. We identified and characterized ecm33+, which encodes a glycosyl-phosphatidylinositol (GPI)-anchored cell surface protein as a transcriptional target of Pmk1 and Atf1. We demonstrated that the gene expression of Ecm33 is regulated by two transcription factors Atf1 and a MADS-box-type transcription factor Mbx1. We identified a putative ATF/CREB-binding site and an RLM1-binding site in the ecm33+promoter region and monitored the transcriptional activity of Atf1 or Mbx1 in living cells using a destabilized luciferase reporter gene fused to three tandem repeats of the CRE and six tandem repeats of the Rlm1-binding sequence, respectively. These reporter genes reflect the activation of the Pmk1 pathway by various stimuli, thereby enabling the real-time monitoring of the Pmk1 cell integrity pathway. Notably, the Δecm33 cells displayed hyperactivation of the Pmk1 signaling together with hypersensitivity to Ca2+and an abnormal morphology, which were almost abolished by simultaneous deletion of the components of the Rho2/Pck2/Pmk1 pathway. Our results suggest that Ecm33 is involved in the negative feedback regulation of Pmk1 cell integrity signaling and is linked to cellular Ca2+signaling.


1982 ◽  
Vol 92 (2) ◽  
pp. 283-288 ◽  
Author(s):  
F D Howard ◽  
H R Petty ◽  
H M McConnell

Two-dimensional PAGE (P. Z. O'Farrell, H. M. Goodman, and P. H. O'Farrell. 1977. Cell. 12:1133-1142) has been employed to assess the effects of antibody-dependent phagocytosis on the cell surface protein composition of RAW264 macrophages. Unilamellar phospholipid vesicles containing 1% dinitrophenyl-aminocaproyl-phosphatidylethanolamine (DNP-cap-PE) were used as the target particle. Macrophages were exposed to anti-DNP antibody alone, vesicles alone, or vesicles in the presence of antibody for 1 h at 37 degrees C. Cell surface proteins were then labeled by lactoperoxidase-catalyzed radioiodination at 4 degrees C. After detergent solubilization, membrane proteins were analyzed by two-dimensional gel electrophoresis. The resulting pattern of spots was compared to that of standard proteins. We have identified several surface proteins, not apparently associated with the phagocytic process, which are present either in a multichain structure or in several discretely charged forms. After phagocytosis, we have observed the appearance of two proteins of 45 and 50 kdaltons in nonreducing gels. In addition, we have noted the disappearance of a 140-kdalton protein in gels run under reducing conditions. These alterations would not be detected in the conventional one-dimensional gel electrophoresis. This evidence shows that phagocytosis leads to a modification of cell surface protein composition. Our results support the concept of specific enrichment and depletion of membrane components during antibody-dependent phagocytosis.


Microbiology ◽  
2002 ◽  
Vol 148 (2) ◽  
pp. 433-442 ◽  
Author(s):  
Stefan Roos ◽  
Hans Jonsson

A gene from Lactobacillus reuteri 1063 encoding a cell-surface protein, designated Mub, that adheres to mucus components in vitro has been cloned and sequenced. The deduced amino acid sequence of Mub (358 kDa) shows the presence of 14 approximately 200 aa repeats and features typical for other cell-surface proteins of Gram-positive bacteria. Fusion proteins consisting of different repeats of Mub and the maltose-binding protein (MBP) were produced. These proteins adhered to pig mucus components, with molecular masses ranging from <0·1 to >2 MDa, to pig gastric mucin and to hen intestinal mucus. The binding of Mub to mucus components occurred in the pH range 3–7·4, with maximum binding at pH 4–5 and could be partly inhibited by the glycoprotein fetuin. Affinity-purified antibodies against recombinant Mub were used in immunofluorescence microscopy to demonstrate the presence of Mub on the cell surface of strain 1063. By using the antibodies in a Western blot analysis, Mub could also be detected in the growth medium. The results implicate Mub as a cell-surface protein that is involved in Lactobacillus interactions with mucin and in colonization of the digestive tract.


1977 ◽  
Vol 75 (2) ◽  
pp. 464-474 ◽  
Author(s):  
M Takeichi

The adhesive properties of Chinese hamster V79 cells were analyzed and characterized by various cell dissociation treatments. The comparisons of aggregability among cells dissociated with EDTA, trypsin + Ca2+, and trypsin + EDTA, revealed that these cells have two adhesion mechanisms, a Ca2+-independent and a Ca2+-dependent one. The former did not depend on temperature, whereas the latter occurred only at physiological temperatures. Both mechanisms were trypsin sensitive, but the Ca2+-dependent one was protected by Ca2+ against trypsinization. In morphological studies, the Ca2+-independent adhesion appeared to be a simple agglutination or flocculation of cells, whereas the Ca2+-dependent adhesion seemed to be more physiological, being accompanied by cell deformation resulting in the increase of contact area between adjacent cells. Lactoperoxidase-catalyzed iodination of cell surface proteins revealed that several proteins are more intensely labeled in cells with Ca2+-independent adhesiveness than in cells without that property. It was also found that a cell surface protein with a molecular weight of approximately 150,000 is present only in cells with Ca2+-dependent adhesiveness. The iodination and trypsinization of this protein were protected by Ca2+, suggesting its reactivity to Ca2+. Possible mechanisms for each adhesion property are discussed, taking into account the correlation of these proteins with cell adhesiveness.


2021 ◽  
Author(s):  
Daniele Mercatelli ◽  
Francesco Formaggio ◽  
Marco Caprini ◽  
Andrew Holding ◽  
Federico Manuel Giorgi

Background: Cell-surface proteins have been widely used as diagnostic and prognostic markers in cancer research, and as targets for the development of anti-cancer agents. So far, very few attempts have been made to characterize the surfaceome of breast cancer patients, particularly in relation with the current molecular breast cancer (BRCA) classification. In this view, we developed a new computational method to infer cell-surface protein activities from transcriptomics data, termed “SURFACER”. Methods: Gene expression data from GTEx were used to build a normal breast network model as input to infer differential cell-surface proteins activity in BRCA tissue samples retrieved from TCGA vs. normal samples. Data were stratified according to the PAM50 transcriptional subtypes (Luminal A, Luminal B, HER2, Basal), while unsupervised clustering techniques were applied to define BRCA subtypes according to cell-surface proteins activity. Results: Our approach led to the identification of 213 PAM50 subtypes-specific deregulated surface genes and the definition of 5 BRCA subtypes, whose prognostic value was assessed by survival analysis, identifying a cell-surface activity configuration at increased risk. The value of the SURFACER method in BRCA genotyping was tested by evaluating the performance of 11 different machine learning classification algorithms.  Conclusions: BRCA patients can be stratified into 5 surface activity-specific groups having the potential to identify subtype-specific actionable targets to design tailored targeted therapies, or for diagnostic purposes. SURFACER-defined subtypes show also a prognostic value, identifying surface-activity profiles at higher risk.


Sign in / Sign up

Export Citation Format

Share Document