cell surface protein
Recently Published Documents


TOTAL DOCUMENTS

457
(FIVE YEARS 51)

H-INDEX

67
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Liqun Luo ◽  
Qijing Xie ◽  
Jiefu Li ◽  
Hongjie Li ◽  
Namrata Udeshi ◽  
...  

Abstract Transcription factors are central commanders specifying cell fate, morphology, and physiology while cell-surface proteins execute these commands through interaction with cellular environment. In developing neurons, it is presumed that transcription factors control wiring specificity through regulation of cell-surface protein expression. However, the number and identity of cell-surface protein(s) a transcription factor regulates remain largely unclear1,2. Also unknown is whether a transcription factor regulates the same or different cell-surface proteins in different neuron types to specify their connectivity. Here we use a lineage-defining transcription factor, Acj6 (ref. 3), to investigate how it controls precise dendrite targeting of Drosophila olfactory projection neurons (PNs). Quantitative cell-surface proteomic profiling of wild-type and acj6 mutant PNs in intact developing brains and a proteome-informed genetic screen identified PN surface proteins that execute Acj6-regulated wiring decisions. These include canonical cell adhesion proteins and proteins previously not associated with wiring, such as the mechanosensitive ion channel Piezo—whose channel activity is dispensable for its wiring function. Comprehensive genetic analyses revealed that Acj6 employs unique sets of cell-surface proteins in different PN types for dendrite targeting. Combinatorial expression of Acj6 wiring executors rescued acj6 mutant phenotypes with higher efficacy and breadth than expression of individual executors. Thus, a key transcription factor controls wiring specificity of different neuron types by specifying distinct combinatorial expression of cell-surface executors.


2021 ◽  
Author(s):  
Qijing Xie ◽  
Jiefu Li ◽  
Hongjie Li ◽  
Namrata D Udeshi ◽  
Tanya Svinkina ◽  
...  

Transcription factors are central commanders specifying cell fate, morphology, and physiology while cell-surface proteins execute these commands through interaction with cellular environment. In developing neurons, it is presumed that transcription factors control wiring specificity through regulation of cell-surface protein expression. However, the number and identity of cell-surface protein(s) a transcription factor regulates remain largely unclear1,2. Also unknown is whether a transcription factor regulates the same or different cell-surface proteins in different neuron types to specify their connectivity. Here we use a lineage-defining transcription factor, Acj6 (ref. 3), to investigate how it controls precise dendrite targeting of Drosophila olfactory projection neurons (PNs). Quantitative cell-surface proteomic profiling of wild-type and acj6 mutant PNs in intact developing brains and a proteome-informed genetic screen identified PN surface proteins that execute Acj6-regulated wiring decisions. These include canonical cell adhesion proteins and proteins previously not associated with wiring, such as the mechanosensitive ion channel Piezo–whose channel activity is dispensable for its wiring function. Comprehensive genetic analyses revealed that Acj6 employs unique sets of cell-surface proteins in different PN types for dendrite targeting. Combinatorial expression of Acj6 wiring executors rescued acj6 mutant phenotypes with higher efficacy and breadth than expression of individual executors. Thus, a key transcription factor controls wiring specificity of different neuron types by specifying distinct combinatorial expression of cell-surface executors.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Tahleesa J. Cuda ◽  
Yaowu He ◽  
Thomas Kryza ◽  
Tashbib Khan ◽  
Brian W. Tse ◽  
...  

Colorectal cancer (CRC) is the third most common malignancy in the world, with 22% of patients presenting with metastatic disease and a further 50% destined to develop metastasis. Molecular imaging uses antigen-specific ligands conjugated to radionuclides to detect and characterise primary cancer and metastases. Expression of the cell surface protein CDCP1 is increased in CRC, and here we sought to assess whether it is a suitable molecular imaging target for the detection of this cancer. CDCP1 expression was assessed in CRC cell lines and a patient-derived xenograft to identify models suitable for evaluation of radio-labelled 10D7, a CDCP1-targeted, high-affinity monoclonal antibody, for preclinical molecular imaging. Positron emission tomography-computed tomography was used to compare zirconium-89 (89Zr)-10D7 avidity to a nonspecific, isotype control 89Zr-labelled IgGκ1 antibody. The specificity of CDCP1-avidity was further confirmed using CDCP1 silencing and blocking models. Our data indicate high avidity and specificity for of 89Zr-10D7 in CDCP1 expressing tumors at. Significantly higher levels than normal organs and blood, with greatest tumor avidity observed at late imaging time points. Furthermore, relatively high avidity is detected in high CDCP1 expressing tumors, with reduced avidity where CDCP1 expression was knocked down or blocked. The study supports CDCP1 as a molecular imaging target for CRC in preclinical PET-CT models using the radioligand 89Zr-10D7.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Michael I Barton ◽  
Stuart A MacGowan ◽  
Mikhail A Kutuzov ◽  
Omer Dushek ◽  
Geoffrey John Barton ◽  
...  

The interaction between the SARS-CoV-2 virus Spike protein receptor binding domain (RBD) and the ACE2 cell surface protein is required for viral infection of cells. Mutations in the RBD are present in SARS-CoV-2 variants of concern that have emerged independently worldwide. For example, the B.1.1.7 lineage has a mutation (N501Y) in its Spike RBD that enhances binding to ACE2. There are also ACE2 alleles in humans with mutations in the RBD binding site. Here we perform a detailed affinity and kinetics analysis of the effect of five common RBD mutations (K417N, K417T, N501Y, E484K, and S477N) and two common ACE2 mutations (S19P and K26R) on the RBD/ACE2 interaction. We analysed the effects of individual RBD mutations and combinations found in new SARS-CoV-2 Alpha (B.1.1.7), Beta (B.1.351), and Gamma (P1) variants. Most of these mutations increased the affinity of the RBD/ACE2 interaction. The exceptions were mutations K417N/T, which decreased the affinity. Taken together with other studies, our results suggest that the N501Y and S477N mutations enhance transmission primarily by enhancing binding, the K417N/T mutations facilitate immune escape, and the E484K mutation enhances binding and immune escape.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dvison de Melo Pacífico ◽  
Cecília Leite Costa ◽  
Hercules Moura ◽  
John R. Barr ◽  
Guilherme Augusto Maia ◽  
...  

AbstractClostridioides difficile BI/NAP1/ribotype 027 is an epidemic hypervirulent strain found worldwide, including in Latin America. We examined the genomes and exoproteomes of two multilocus sequence type (MLST) clade 2 C. difficile strains considered hypervirulent: ICC-45 (ribotype SLO231/UK[CE]821), isolated in Brazil, and NAP1/027/ST01 (LIBA5756), isolated during a 2010 outbreak in Costa Rica. C. difficile isolates were cultured and extracellular proteins were analyzed using high-performance liquid chromatography-tandem mass spectrometry. Genomic analysis revealed that these isolates shared most of the gene composition. Only 83 and 290 NAP1/027 genes were considered singletons in ICC-45 and NAP1/027, respectively. Exoproteome analysis revealed 197 proteins, of which 192 were similar in both strains. Only five proteins were exclusive to the ICC-45 strain. These proteins were involved with catalytic and binding functions and indirectly interacted with proteins related to pathogenicity. Most proteins, including TcdA, TcdB, flagellin subunit, and cell surface protein, were overrepresented in the ICC-45 strain; 14 proteins, including mature S-layer protein, were present in higher proportions in LIBA5756. Data are available via ProteomeXchange with identifier PXD026218. These data show close similarity between the genome and proteins in the supernatant of two strains with hypervirulent features isolated in Latin America and underscore the importance of epidemiological surveillance of the transmission and emergence of new strains.


2021 ◽  
Author(s):  
Michael I Barton ◽  
Stuart MacGowan ◽  
Mikhail A Kutuzov ◽  
Omer Dushek ◽  
Geoffrey J Barton ◽  
...  

The interaction between the SARS-CoV-2 virus Spike protein receptor binding domain (RBD) and the ACE2 cell surface protein is required for viral infection of cells. Mutations in the RBD domain are present in SARS-CoV-2 variants of concern that have emerged independently worldwide. For example, the more transmissible B.1.1.7 lineage has a mutation (N501Y) in its Spike RBD domain that enhances binding to ACE2. There are also ACE2 alleles in humans with mutations in the RBD binding site. Here we perform a detailed affinity and kinetics analysis of the effect of five common RBD mutations (K417N, K417T, N501Y, E484K and S477N) and two common ACE2 mutations (S19P and K26R) on the RBD/ACE2 interaction. We analysed the effects of individual RBD mutations, and combinations found in new SARS-CoV-2 variants first identified in the UK (B.1.1.7), South Africa (B.1.351) and Brazil (P1). Most of these mutations increased the affinity of the RBD/ACE2 interaction. The exceptions were mutations K417N/T, which decreased the affinity. Taken together with other studies, our results suggest that the N501Y and S477N mutations primarily enhance transmission, the K417N/T mutations facilitate immune escape, and the E484K mutation facilitates both transmission and immune escape.


Author(s):  
Muhammad Hassan ◽  
Atif Amin Baig

Computational approach is used to identify the binding region of alpha-enolase over cell-surface protein of neutrophil. The product of alpha-enolase gene binds the one of the cell surface protein of neutrophil known as myoblast. After the binding on myoblast, neutrophil structure gets change and mobilized chromatin fibers came out to eliminate pathogen though NETosis. Thus, over study revealed that alpha-enolase of Streptococcus Pneumoniae is one of the major factor in inducing NETs during innate immune response.


Sign in / Sign up

Export Citation Format

Share Document