Effect of Growth Pressure on Structural Properties of SiC Film Grown on Insulator by Utilizing Graphene as a Buffer Layer

Author(s):  
Budi Astuti ◽  
Shaharin Fadzli Abd Rahman ◽  
Masahiro Tanikawa ◽  
Mohamad Rusop Mahmood ◽  
Kanji Yasui ◽  
...  

Heteroepitaxial growth of silicon carbide (SiC) on graphene/SiO<sub>2</sub>/Si substrates was carried out using a home-made hot-mesh chemical vapor deposition (HM-CVD) apparatus. Monomethylsilane (MMS) was used as single source gas while hydrogen (H<sub>2</sub>) as carrier gas. The substrate temperature, tungsten mesh temperature, H<sub>2</sub> flow rate and distance between mesh and substrate were fixed at 750 °C, 1700 °C, 100 sccm and 30 mm, respectively. The growth pressures were set to 1.2, 1.8 and 2.4 Torr. The growth of 3C-SiC (111) on graphene/SiO<sub>2</sub>/Si were confirmed by the observation of θ-2θ diffraction peak at 35.68°. The diffraction peak of thin film on graphene/SiO<sub>2</sub>/Si substrate at pressure growth is 1.8 Torr is relatively more intense and sharper than thin film grown at pressure growth 1.2 and 2.4 Torr, thus indicates that the quality of grown film at 1.8 Torr is better. The sharp and strong peak at 33° was observed on the all film grown, that peak was attributed Si(200) nanocrystal. The reason why Si (200) nanocrystal layer is formed is not understood. In principle, it can’t be denied that the low quality of the grown thin film is influenced by the capability of our home-made apparatus. However, we believe that the quality can be further increased by the improvement of apparatus design. As a conclusion, the growth pressures around 1.8 Torr seems to be the best pressures for the growth of heteroepitaxial 3C-SiC thin film.

2008 ◽  
Vol 600-603 ◽  
pp. 251-254 ◽  
Author(s):  
Yong Mei Zhao ◽  
Guo Sheng Sun ◽  
Xing Fang Liu ◽  
Jia Ye Li ◽  
Wan Shun Zhao ◽  
...  

Using AlN as a buffer layer, 3C-SiC film has been grown on Si substrate by low pressure chemical vapor deposition (LPCVD). Firstly growth of AlN thin films on Si substrates under varied V/III ratios at 1100oC was investigated and the (002) preferred orientational growth with good crystallinity was obtained at the V/III ratio of 10000. Annealing at 1300oC indicated the surface morphology and crystallinity stability of AlN film. Secondly the 3C-SiC film was grown on Si substrate with AlN buffer layer. Compared to that without AlN buffer layer, the crystal quality of the 3C-SiC film was improved on the AlN/Si substrate, characterized by X-ray diffraction (XRD) and Raman measurements.


1998 ◽  
Vol 535 ◽  
Author(s):  
S. E. Saddow ◽  
M. E. Okhusyen ◽  
M. S. Mazzola ◽  
M. Dudley ◽  
X. R. Huang ◽  
...  

AbstractIn this paper we discuss the growth and characterization of 3C-SiC epitaxial layers grown on both a Si substrate as well as on a novel substrate. The growth uses a typical three step process. First an etch of the Si surface is performed, second the surface of the Si is carbonized and third 3C-SiC is grown on the carbonized surface. Several characterization techniques were used to verify the quality of the 3C-SiC film. Microscopy was used to investigate the surface morphology, X-ray and electron diffraction were used to determine crystal structure, cross section TEM was used to verify crystal structure and highlight twinning, and x-ray topography was used to measure the strain fields induced in Si substrate at the 3C-SiC/Si interface.


1988 ◽  
Vol 116 ◽  
Author(s):  
Russell D. Dupuis

AbstractThe use of the metalorganic chemical vapor deposition thin film materials technology in the heteroepitaxial growth of GaAs on Si substrates is of increasing interest for a wide variety of applications. This paper will describe the principles and applications of this materials technology and discuss possible future approaches to the growth of high-quality HI-V heteroepitaxial layers on Si substrates.


2004 ◽  
Vol 19 (1) ◽  
pp. 56-59
Author(s):  
C. E. Murray ◽  
I. C. Noyan ◽  
B. Lai ◽  
Z. Cai

The local variation in strain and rotation of the Si substrate due to overlying Ni thin film features has been observed using X-ray microdiffraction. Residual tensile stress in 1 μm thick, 190 μm diameter Ni dots of 990 MPa imparted an average compressive stress in the underlying Si substrate. Ni Kα fluorescence scans, acquired simultaneously with Si (333) diffraction data, allow for a precise determination of the Ni feature edge location relative to the observed shift in Si (333) peak position. Rocking curve mesh scans, in which the sample was translated perpendicular and parallel to the diffraction plane, were used to deconvolute the effects of substrate strain due to d-spacing shifts and rotation of the local Si surface. In addition, shear strains at the dot edge imparted a significant shift in the Si (333) diffraction peak, producing a secondary diffraction peak in modified reciprocal space scans.


1990 ◽  
Vol 7 (7) ◽  
pp. 308-311
Author(s):  
Li Chaorong ◽  
Mai Zhenhong ◽  
Cui Shufan ◽  
Zhou Junming ◽  
Yutian Wang

2007 ◽  
Vol 22 (5) ◽  
pp. 1275-1280 ◽  
Author(s):  
Y. Morikawa ◽  
M. Hirai ◽  
A. Ohi ◽  
M. Kusaka ◽  
M. Iwami

We have studied the heteroepitaxial growth of 3C–SiC film on an Si(100) substrate by plasma chemical vapor deposition using monomethylsilane, a single-molecule gas containing both Si and C atoms. We have tried to introduce an interval process, in which we decrease the substrate temperature for a few minutes at a suitable stage of film growth. It was expected that, during the interval process, stabilization such as desorption of nonreacted precursors and lateral diffusion of species produced at the initial stage of film growth would occur. From the results, it appears that the interval process using a substrate temperature of 800 °C effectively suppresses polycrystallization of 3C–SiC growth on the Si(100) surface


2014 ◽  
Vol 778-780 ◽  
pp. 230-233
Author(s):  
Yukimune Watanabe ◽  
Tsuyoshi Horikawa ◽  
Kiichi Kamimura

The carbonized layer for a buffer layer strongly influences the crystalline quality of the 3C-SiC epitaxial films on the Si substrates. The growth mechanism of the carbonized layer strongly depended on the process conditions. The surface of silicon substrate was carbonized under the pressure of 7.8 × 10-3 Pa or 7.8 × 10-2 Pa in this research. Under the relatively low pressure of 7.8 × 10-3 Pa, the carbonized layer was grown by the epitaxial mechanism. The crystal axis of the carbonized layer grown under this pressure was confirmed to coincide with the crystal axis of the Si substrate from the results of the selected area electron diffraction (SAED) analysis. Under the relatively high pressure condition of 7.8 × 10-2 Pa, the carbonized layer was grown by the diffusion mechanism. The result of the SAED pattern and the XTEM image indicated that this layer consisted of small grainy crystals and their crystal axes inclined against the growth direction. It was confirmed that the crystalline quality of the SiC film deposited on the carbonized layer grown by the epitaxial mechanism is better than that deposited on the layer grown by the diffusion mechanism.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2450
Author(s):  
Oumaima Abouzaid ◽  
Hussein Mehdi ◽  
Mickael Martin ◽  
Jérémy Moeyaert ◽  
Bassem Salem ◽  
...  

The epitaxy of III-V semiconductors on silicon substrates remains challenging because of lattice parameter and material polarity differences. In this work, we report on the Metal Organic Chemical Vapor Deposition (MOCVD) and characterization of InAs/GaAs Quantum Dots (QDs) epitaxially grown on quasi-nominal 300 mm Ge/Si(001) and GaAs(001) substrates. QD properties were studied by Atomic Force Microscopy (AFM) and Photoluminescence (PL) spectroscopy. A wafer level µPL mapping of the entire 300 mm Ge/Si substrate shows the homogeneity of the three-stacked InAs QDs emitting at 1.30 ± 0.04 µm at room temperature. The correlation between PL spectroscopy and numerical modeling revealed, in accordance with transmission electron microscopy images, that buried QDs had a truncated pyramidal shape with base sides and heights around 29 and 4 nm, respectively. InAs QDs on Ge/Si substrate had the same shape as QDs on GaAs substrates, with a slightly increased size and reduced luminescence intensity. Our results suggest that 1.3 μm emitting InAs QDs quantum dots can be successfully grown on CMOS compatible Ge/Si substrates.


Sign in / Sign up

Export Citation Format

Share Document