A Model on the Correlation between Composition and Mechanical Properties of Mg-Al-Zn Alloys by Using Artificial Neural Network

2005 ◽  
Vol 488-489 ◽  
pp. 793-796 ◽  
Author(s):  
Hai Ding Liu ◽  
Ai Tao Tang ◽  
Fu Sheng Pan ◽  
Ru Lin Zuo ◽  
Ling Yun Wang

A model was developed for the analysis and prediction of correlation between composition and mechanical properties of Mg-Al-Zn (AZ) magnesium alloys by applying artificial neural network (ANN). The input parameters of the neural network (NN) are alloy composition. The outputs of the NN model are important mechanical properties, including ultimate tensile strength, tensile yield strength and elongation. The model is based on multilayer feedforward neural network. The NN was trained with comprehensive data set collected from domestic and foreign literature. A very good performance of the neural network was achieved. The model can be used for the simulation and prediction of mechanical properties of AZ system magnesium alloys as functions of composition.

10.29007/lpmh ◽  
2018 ◽  
Author(s):  
Faezeh Ghaleh Navi ◽  
Hamed Mazandarani Zadeh ◽  
Dragan Savic

Groundwater is one of the major sources of fresh water. Maintenance and management of this vital resource is so important especially in arid and semi-arid regions. Reliable and accurate groundwater quality assessment is essential as a basic data for any groundwater management studies. The aim of this study is to compare the accuracy of two Artificial Neural Network (ANN) and Kriging methods in predicting chlorine in groundwater. In case of ANN, we created an appropriate emulator, which minimize the prediction error by changing the parameters of the neural network, including the number of layers. The best Kriging model is also obtained by changing the variogram function, such that the Gaussian variogram has the least error in interpolation of the amount of chlorine. To evaluate the accuracy of these two methods, the mean square error (MSE) and Coefficient of determination (R2) are used. The data set consists of the amount of chlorine, in a monthly basis, measured at 112 observation wells from 1999 to 2015 in aquifer Qazvin, Iran. MSE values for ANN and Kriging are 14.8 and 15.4, respectively, which indicate that the ANN has a better performance and is more capable of predicting chlorine values in comparison with Kriging.


2013 ◽  
Vol 367 ◽  
pp. 40-44 ◽  
Author(s):  
K.V. Sudhakar ◽  
M.E. Haque

Theoretical prediction of mechanical properties using Artificial Neural Network (ANN) of a new beta-titanium alloy was investigated and compared with the experimental results obtained as a function of heat treatment. The cold worked biomaterial was subjected to different thermal processing cycles. The experimental values of mechanical properties were determined using MTS Landmark-servo hydraulic UTS machine. The new beta-titanium alloy demonstrated an excellent combination of strength and ductility for β-annealing and solution treatment plus aging thermal processing treatments. This data was used to train an artificial neural network (ANN) model to predict hardness. The predicted hardness values were found to demonstrate very good agreement with the experimental values.


2020 ◽  
Vol 38 (4A) ◽  
pp. 510-514
Author(s):  
Tay H. Shihab ◽  
Amjed N. Al-Hameedawi ◽  
Ammar M. Hamza

In this paper to make use of complementary potential in the mapping of LULC spatial data is acquired from LandSat 8 OLI sensor images are taken in 2019.  They have been rectified, enhanced and then classified according to Random forest (RF) and artificial neural network (ANN) methods. Optical remote sensing images have been used to get information on the status of LULC classification, and extraction details. The classification of both satellite image types is used to extract features and to analyse LULC of the study area. The results of the classification showed that the artificial neural network method outperforms the random forest method. The required image processing has been made for Optical Remote Sensing Data to be used in LULC mapping, include the geometric correction, Image Enhancements, The overall accuracy when using the ANN methods 0.91 and the kappa accuracy was found 0.89 for the training data set. While the overall accuracy and the kappa accuracy of the test dataset were found 0.89 and 0.87 respectively.


Author(s):  
Komsan Wongkalasin ◽  
Teerapon Upachaban ◽  
Wacharawish Daosawang ◽  
Nattadon Pannucharoenwong ◽  
Phadungsak Ratanadecho

This research aims to enhance the watermelon’s quality selection process, which was traditionally conducted by knocking the watermelon fruit and sort out by the sound’s character. The proposed method in this research is generating the sound spectrum through the watermelon and then analyzes the response signal’s frequency and the amplitude by Fast Fourier Transform (FFT). Then the obtained data were used to train and verify the neural network processor. The result shows that, the frequencies of 129 and 172 Hz were suit to be used in the comparison. Thirty watermelons, which were randomly selected from the orchard, were used to create a data set, and then were cut to manually check and match to the fruits’ quality. The 129 Hz frequency gave the response ranging from 13.57 and above in 3 groups of watermelons quality, including, not fully ripened, fully ripened, and close to rotten watermelons. When the 172 Hz gave the response between 11.11–12.72 in not fully ripened watermelons and those of 13.00 or more in the group of close to rotten and hollow watermelons. The response was then used as a training condition for the artificial neural network processor of the sorting machine prototype. The verification results provided a reasonable prediction of the ripeness level of watermelon and can be used as a pilot prototype to improve the efficiency of the tools to obtain a modern-watermelon quality selection tool, which could enhance the competitiveness of the local farmers on the product quality control.


Author(s):  
Yangping Li ◽  
Yangyi Liu ◽  
Sihua Luo ◽  
Zi Wang ◽  
Ke Wang ◽  
...  

Abstract The attractive mechanical properties of nickel-based superalloys primarily arise from an assembly of γ′ precipitates with desirable size, volume fraction, morphology and spatial distribution. In addition, the solutioning cooling rate after super solvus heat treatment is critical for controlling the features of γ′ precipitates. However, the correlation between these multidimensional parameters and mechanical hardness has not been well established to date. Scanning electron microscope (SEM) images with different γ′ precipitates were investigated in this study, and artificial neural network (ANN) method was used to build a microstructure-mechanical property model. The critical step in this work is to extract different microstructural features from hundreds of SEM images. In order to improve the accuracy of prediction, the cooling rate was also considered as the input. In this work, the methodology was proved to be capable of bridging microstructural features and mechanical properties under the inspiration of material genome spirit.


2014 ◽  
Vol 17 (1) ◽  
pp. 56-74 ◽  
Author(s):  
Gurjeet Singh ◽  
Rabindra K. Panda ◽  
Marc Lamers

The reported study was undertaken in a small agricultural watershed, namely, Kapgari in Eastern India having a drainage area of 973 ha. The watershed was subdivided into three sub-watersheds on the basis of drainage network and land topography. An attempt was made to relate the continuously monitored runoff data from the sub-watersheds and the whole-watershed with the rainfall and temperature data using the artificial neural network (ANN) technique. The reported study also evaluated the bias in the prediction of daily runoff with shorter length of training data set using different resampling techniques with the ANN modeling. A 10-fold cross-validation (CV) technique was used to find the optimum number of hidden neurons in the hidden layer and to avoid neural network over-fitting during the training process for shorter length of data. The results illustrated that the ANN models developed with shorter length of training data set avoid neural network over-fitting during the training process, using a 10-fold CV method. Moreover, the biasness was investigated using the bootstrap resampling technique based ANN (BANN) for short length of training data set. In comparison with the 10-fold CV technique, the BANN is more efficient in solving the problems of the over-fitting and under-fitting during training of models for shorter length of data set.


2017 ◽  
Vol 7 (1.1) ◽  
pp. 591
Author(s):  
M. Shyamala Devi ◽  
A.N. Sruthi ◽  
P. Balamurugan

At present, skin cancers are extremely the most severe and life-threatening kind of cancer. The majority of the pores and skin cancers are completely remediable at premature periods. Therefore, a premature recognition of pores and skin cancer can effectively protect the patients. Due to the progress of modern technology, premature recognition is very easy to identify. It is not extremely complicated to discover the affected pores and skin cancers with the exploitation of Artificial Neural Network (ANN). The treatment procedure exploits image processing strategies and Artificial Intelligence. It must be noted that, the dermoscopy photograph of pores and skin cancer is effectively determined and it is processed to several pre-processing for the purpose of noise eradication and enrichment in image quality. Subsequently, the photograph is distributed through image segmentation by means of thresholding. Few components distinctive for skin most cancers regions. These features are mined the practice of function extraction scheme - 2D Wavelet Transform scheme. These outcomes are provides to the Back-Propagation Neural (BPN) Network for effective classification. This completely categorizes the data set into either cancerous or non-cancerous. 


2019 ◽  
Vol 1 (11) ◽  
Author(s):  
U. Alaneme George ◽  
M. Mbadike Elvis

Abstract The use of aluminium waste (AW) and sawdust ash (SDA) in concrete was evaluated in this study where the cement ratio was partially replaced by fractions of AW and SDA introduced as a supplementary cementitious material. Artificial neural network (ANN) was adapted as the modelling tool for this study and was developed with a two-layer feed-forward network, hidden neurons with sigmoid activation function and linear output neurons for the simulation of the network. The setting time and concrete compressive strength at varying curing days were predicted using the neural network model with variations of constituents of the cement content consisting of OPC, SDA and AW as the input of the network. Three input and seven output data set were used for the model development using the following algorithms; Data Division: Random, Training: Levenberg–Marquardt and Calculation: MATLAB. The data sets are set aside for validation, training and testing; 70% of the samples are used for training, 15% for validation and 15% are also used for testing. The performance of the networks was evaluated using linear regression, RMSE and R-values. The model performance scored 0.91 and 0.07 for R2 and RMSE, respectively, and performed better than the linear regression model, the results indicate the efficiency, reliability and usefulness of ANN for predicting concrete mechanical properties where AW and SDA are used to replace cement ratio accurately.


Sign in / Sign up

Export Citation Format

Share Document