scholarly journals VLSI implementation of Wallace Tree Multiplier using Ladner-Fischer Adder

Author(s):  
Kommalapati Monica ◽  
◽  
Dereddy Anuradha ◽  
Syed Rasheed ◽  
Barnala Shereesha ◽  
...  

Nowadays, most of the application depends on arithmetic designs such as an adder, multiplier, divider, etc. Among that, multipliers are very essential for designing industrial applications such as Finite Impulse Response, Fast Fourier Transform, Discrete cosine transform, etc. In the conventional methods, different kind of multipliers such as array multiplier, booth multiplier, bough Wooley multiplier, etc. are used. These existing multipliers are occupied more area to operate. In this study, Wallace Tree Multiplier (WTM) is implemented to overcome this problem. Two kinds of multipliers have designed in this research work for comparison. At first, existing WTM is designed with normal full adders and half adders. Next, proposed WTM is designed using Ladner Fischer Adder (LFA) to improve the hardware utilization and reduce the power consumption. Field Programmable Gate Array (FPGA) performances such as slice Look Up Table (LUT), Slice Register, Bonded Input-Output Bios (IOB) and power consumption are evaluated. The proposed WTM-LFA architecture occupied 374 slice LUT, 193 slice register, 59 bonded IOB, and 26.31W power. These FPGA performances are improved compared to conventional multipliers such asModified Retiming Serial Multiplier (MRSM), Digit Based Montgomery Multiplier (DBMM), and Fast Parallel Decimal Multiplier (FPDM).

2018 ◽  
Vol 7 (4) ◽  
pp. 2569
Author(s):  
Priyanka Chauhan ◽  
Dippal Israni ◽  
Karan Jasani ◽  
Ashwin Makwana

Data acquisition is the most demanding application for the acquisition and monitoring of various sensor signals. The data received are processed in real-time environment. This paper proposes a novel Data Acquisition (DAQ) technique for better resource utilization with less power consumption. Present work has designed and compared advanced Quad Data Rate (QDR) technique with traditional Dual Data Rate (DDR) technique in terms of resource utilization and power consumption of Field Programmable Gate Array (FPGA) hardware. Xilinx ISE is used to verify results of FPGA resource utilization by QDR with state of the art DDR approach. The paper ratiocinates that QDR technique outperforms traditional DDR technique in terms of FPGA resource utilization.  


2012 ◽  
Vol 2012 (1) ◽  
pp. 000542-000547 ◽  
Author(s):  
Reza Asgari

2.5D/3D devices are the next major packaging technologies, driven by the need for more functionality, lower power consumption and smaller footprint. Many device manufacturers are devoting capital to develop their own processes and some are already shipping devices such as FPGA (Field Programmable Gate Array) on interposers. 3D packages often require hundreds of thousands of I/O per die. Micro Pillar bumps and C4 bumps are the main bump geometries used in 3D packages as their small pitch and size allow the required number of I/Os. Inspecting these bumps throughout the process is critical because failure after chip to chip or chip to wafer bonding is very costly. This paper describes the use of a camera and laser triangulation to provide complete 2D and 3D measurement and inspection capability.


2018 ◽  
Vol 7 (2.7) ◽  
pp. 409 ◽  
Author(s):  
R Nikhil ◽  
G V. S. Veerendra ◽  
J Rahul M. S. Sri Harsha ◽  
Dr V. S. V. Prabhakar

Now a days in designing a VLSI circuits we are coming across many problems such as high power intake, delay and large utilization of chip area in order to overcome these problems a new architectures are developed. In our project we deals with FFT computation which internally involves series of multiplication and addition therefore requirement of efficient multipliers is needed and therefore we come across two high speed improved multipliers Booth multiplier and Wallace tree multiplier which are good in terms of power efficiency and low output delay. The main aim of our project involves hybridizing the both Wallace multiplier and Booth multiplier which yields low delay and low power consumption than compared to individual multipliers. The Booth multiplier is used for reduction of partial products and for addition operations carry save adders is used in Wallace tree multipliers and thus hybrid is designed by combining both the algorithms which in turn produces better results and they can be observed in comparisons tabular column in our documentation. These multipliers can be designed in many ways such using cmos layout techniques and also using Verilog programming and we have chosen Verilog programming which requires Xilinx software and codes are developed in gate level design model for the respective multiplier models and the results will be tabulated.  


2016 ◽  
Vol 10 (3) ◽  
pp. 163-172 ◽  
Author(s):  
Zarrin Tasnim Sworna ◽  
Mubin UlHaque ◽  
Nazma Tara ◽  
Hafiz Md. Hasan Babu ◽  
Ashis Kumar Biswas

With the crisis of power across the globe, green communication and power-efficient devices are getting more and more attention. This work emphasis about the implementation of Control Unit (CU) circuit on FPGA kit. In this project, power consumption of CU circuit is analyzed by changing the different Input/Output (I/O) standards of FPGA. This project is implemented on Xilinx 14.1 tool and the power consumption on CU is calculated with X Power Analyzer tool on 28-Nano-Meter (nm) Artix-7 Field Programmable Gate Array (FPGA). Out of different I/O standards, CU circuit is most power efficient with LVCMOS I/O standard on Artix-7 FPGA


In this research work, a low power transceiver is designed using Spartan-3 and Spartan-6 Field-Programmable Gate Array (FPGA). In this work, a Universal Asynchronous Receiver Transmitter (UART) device is used as a transceiver. The implementation of UART is possible with EDA tools called Xilinx 14.1 and the results of the power analysis are targeted on Spartan-3 and Spartan-6 FPGA. The variation of different power of chips that are fabricated on FPGA for e.g., Input/Output (I/O) power consumption, Leakage power dissipation, Signal power utilization, Logic power usage, and the use of Total power, is observed by changing the voltage supply. This research work shows how the change in voltage influence the power consumption of UART on Spartan-3 and Spartan-6 FPGA devices. It is observed that Spartan-6 is found to be more powerefficient as voltage supply increases.


Author(s):  
Aneela Pathan ◽  
Tayab D. Memon ◽  
Fareesa K. Sohu ◽  
Muhammad A. Rajput

Different multiplication algorithms have different performance characteristics. Some are good at speed while others consume less area when implemented on hardware, like Field Programmable Gate Array (FPGA)-the advanced implementation technology for DSP systems. The eminent parallel and sequential multiplication algorithms include Shift and Add, Wallace Tree, Booth, and Array. The multiplier optimization attempts have also been reported in adders used for partial product addition. In this paper, analogous to conventional multipliers, two new multiplication algorithms implemented on FPGA are shown and compared with conventional algorithms as stand-alone and by using them in the implementation of FIR filters and adaptive channel equalizer using the LMS algorithm. The work is carried out on Spartan-6 FPG that may be extended for any type of FPGA. Results are compared in terms of resource utilization, power consumption, and maximum achieved frequency. The results show that for a small length of coefficients like 3-bit, the proposed algorithms work very well in terms of achieved frequency, consumed power, and even resource utilization. Whilst for the length greater than 3-bit, the Pipelined multiplier is much better in frequency than the proposed and conventional ones, and the Booth multiplier consumes fewer resources in terms of lookup tables.


2020 ◽  
Vol 10 (11) ◽  
pp. 3926
Author(s):  
Marcin Kubica ◽  
Dariusz Kania

The main purpose of the paper is to present technology mapping of FSM (finite state machine) oriented to LUT (look-up table)-based FPGA (field-programmable gate array). The combinational part of an automaton, which consists of a transition block and an output block, was mapped in LUT-based logic blocks. In the paper, the idea of carrying out the combinational part of FSM was presented and leads to the reduction of the number of LUTs needed to carry out an automaton. The essence of this method is a simultaneous synthesis of the whole combinational block described in the form of multi-output function. The proposed idea makes it possible to conduct decomposition that may enable to share logic blocks, which can lead to the reduction of using resources of FPGA. The decomposition process was conducted using the analyzed DECOMP system. The effectiveness of the proposed idea of the FSM description was also confirmed by conducting decomposition with the usage of the ABC system. The obtained results prove the efficiency of the proposed synthesis method of FSM in comparison with the separate synthesis of a transition block and an output block.


Sign in / Sign up

Export Citation Format

Share Document