scholarly journals Determination of Plant Developmental Stability in Plant Lighting with Hyperspectral Imaging

2021 ◽  
Vol 15 (1) ◽  
pp. 4-8
Author(s):  
S. A. Rakutko ◽  
E. N. Rakutko ◽  
A. P. Mishanov,

The authors showed that a convenient, accurate and fast way of assessing the degree of influence of environmental factors on plants was needed to optimize photoculture. They emphasized the importance of non-destructive monitoring of crops physiological state of, for which they used phenomics technologies, for example, remote sensing using hyperspectral cameras.(Research purpose) To reveal the possibility of using hyperspectral imaging to determine the plant developmental stability.(Materials and methods) As a measure of the favorable impact of environmental factors on the growth and development of plants, their developmental stability was taken, numerically characterized by the fluctuating asymmetry value. The authors proposed to use vegetation indices determined from the leaf reflection spectra as a bilateral feature. The object of experimental research was juvenile cucumber plants. The studies were carried out in laboratory conditions. The spectral characteristics of cucumber leaves grown under different light quality of radiation were determined using a Specim IQ hyperspectral camera. Information on the spectral reflectances was extracted from the resulting data hypercube. As an example calculations were performed for Normalized Difference Vegetation Index.(Results and discussion) The authors revealed differences in the productivity indicators of plants grown under different light quality. They revealed a significant frequency of occurrence of Normalized Difference Vegetation Index asymmetry in two halves of the cucumber leaf surface. The fluctuating nature of this asymmetry was confirmed. They found that with a light quality providing a higher productivity of plants, lower values of fluctuating asymmetry were observed, which indicate greater stability of plant development.(Conclusions) The authors proposed a method for determining the plant developmental stability using a hyperspectral camera. The method was based on the assessment of the fluctuating asymmetry of vegetation indices calculated for points on the leaf surface, characterized by the same location conditions relative to the border of its left and right halves. A preliminary assessment of the possibility of determining the developmental stability by the results of phenotyping using the example of cucumber plants showed the feasibility of the method and its practical applicability. 

2020 ◽  
Vol 7 (1) ◽  
pp. 21
Author(s):  
Faradina Marzukhi ◽  
Nur Nadhirah Rusyda Rosnan ◽  
Md Azlin Md Said

The aim of this study is to analyse the relationship between vegetation indices of Normalized Difference Vegetation Index (NDVI) and soil nutrient of oil palm plantation at Felcra Nasaruddin Bota in Perak for future sustainable environment. The satellite image was used and processed in the research. By Using NDVI, the vegetation index was obtained which varies from -1 to +1. Then, the soil sample and soil moisture analysis were carried in order to identify the nutrient values of Nitrogen (N), Phosphorus (P) and Potassium (K). A total of seven soil samples were acquired within the oil palm plantation area. A regression model was then made between physical condition of the oil palms and soil nutrients for determining the strength of the relationship. It is hoped that the risk map of oil palm healthiness can be produced for various applications which are related to agricultural plantation.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1486
Author(s):  
Chris Cavalaris ◽  
Sofia Megoudi ◽  
Maria Maxouri ◽  
Konstantinos Anatolitis ◽  
Marios Sifakis ◽  
...  

In this study, a modelling approach for the estimation/prediction of wheat yield based on Sentinel-2 data is presented. Model development was accomplished through a two-step process: firstly, the capacity of Sentinel-2 vegetation indices (VIs) to follow plant ecophysiological parameters was established through measurements in a pilot field and secondly, the results of the first step were extended/evaluated in 31 fields, during two growing periods, to increase the applicability range and robustness of the models. Modelling results were examined against yield data collected by a combine harvester equipped with a yield-monitoring system. Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) were examined as plant signals and combined with Normalized Difference Water Index (NDWI) and/or Normalized Multiband Drought Index (NMDI) during the growth period or before sowing, as water and soil signals, respectively. The best performing model involved the EVI integral for the 20 April–31 May period as a plant signal and NMDI on 29 April and before sowing as water and soil signals, respectively (R2 = 0.629, RMSE = 538). However, model versions with a single date and maximum seasonal VIs values as a plant signal, performed almost equally well. Since the maximum seasonal VIs values occurred during the last ten days of April, these model versions are suitable for yield prediction.


2021 ◽  
Vol 13 (6) ◽  
pp. 1144
Author(s):  
Mahendra Bhandari ◽  
Shannon Baker ◽  
Jackie C. Rudd ◽  
Amir M. H. Ibrahim ◽  
Anjin Chang ◽  
...  

Drought significantly limits wheat productivity across the temporal and spatial domains. Unmanned Aerial Systems (UAS) has become an indispensable tool to collect refined spatial and high temporal resolution imagery data. A 2-year field study was conducted in 2018 and 2019 to determine the temporal effects of drought on canopy growth of winter wheat. Weekly UAS data were collected using red, green, and blue (RGB) and multispectral (MS) sensors over a yield trial consisting of 22 winter wheat cultivars in both irrigated and dryland environments. Raw-images were processed to compute canopy features such as canopy cover (CC) and canopy height (CH), and vegetation indices (VIs) such as Normalized Difference Vegetation Index (NDVI), Excess Green Index (ExG), and Normalized Difference Red-edge Index (NDRE). The drought was more severe in 2018 than in 2019 and the effects of growth differences across years and irrigation levels were visible in the UAS measurements. CC, CH, and VIs, measured during grain filling, were positively correlated with grain yield (r = 0.4–0.7, p < 0.05) in the dryland in both years. Yield was positively correlated with VIs in 2018 (r = 0.45–0.55, p < 0.05) in the irrigated environment, but the correlations were non-significant in 2019 (r = 0.1 to −0.4), except for CH. The study shows that high-throughput UAS data can be used to monitor the drought effects on wheat growth and productivity across the temporal and spatial domains.


2018 ◽  
Vol 37 (3) ◽  
pp. 219-236 ◽  
Author(s):  
Khalid Mahmood ◽  
Zia Ul-Haq ◽  
Fiza Faizi ◽  
Syeda A. Batol

This study compares the suitability of different satellite-based vegetation indices (VIs) for environmental hazard assessment of municipal solid waste (MSW) open dumps. The compared VIs, as bio-indicators of vegetation health, are normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), and modified soil adjusted vegetation index (MSAVI) that have been subject to spatio-temporal analysis. The comparison has been made based on three criteria: one is the exponential moving average (EMA) bias, second is the ease in visually finding the distance of VI curve flattening, and third is the radius of biohazardous zone in relation to the waste heap dumped at them. NDVI has been found to work well when MSW dumps are surrounded by continuous and dense vegetation, otherwise, MSAVI is a better option due to its ability for adjusting soil signals. The hierarchy of the goodness for least EMA bias is MSAVI> SAVI> NDVI with average bias values of 101 m, 203 m, and 270 m, respectively. Estimations using NDVI have been found unable to satisfy the direct relationship between waste heap and hazardous zone size and have given a false exaggeration of 374 m for relatively smaller dump as compared to the bigger one. The same false exaggeration for SAVI and MSAVI is measured to be 86 m and -14 m, respectively. So MSAVI is the only VI that has shown the true relation of waste heap and hazardous zone size. The best visualization of distance-dependent vegetation health away from the dumps is also provided by MSAVI.


Weed Science ◽  
2006 ◽  
Vol 54 (02) ◽  
pp. 346-353 ◽  
Author(s):  
Francisca López-Granados ◽  
Montse Jurado-Expósito ◽  
Jose M. Peña-Barragán ◽  
Luis García-Torres

Field research was conducted to determine the potential of hyperspectral and multispectral imagery for late-season discrimination and mapping of grass weed infestations in wheat. Differences in reflectance between weed-free wheat and wild oat, canarygrass, and ryegrass were statistically significant in most 25-nm-wide wavebands in the 400- and 900-nm spectrum, mainly due to their differential maturation. Visible (blue, B; green, G; red, R) and near infrared (NIR) wavebands and five vegetation indices: Normalized Difference Vegetation Index (NDVI), Ratio Vegetation Index (RVI), R/B, NIR-R and (R − G)/(R + G), showed potential for discriminating grass weeds and wheat. The efficiency of these wavebands and indices were studied by using color and color-infrared aerial images taken over three naturally infested fields. In StaCruz, areas infested with wild oat and canarygrass patches were discriminated using the indices R, NIR, and NDVI with overall accuracies (OA) of 0.85 to 0.90. In Florida–West, areas infested with wild oat, canarygrass, and ryegrass were discriminated with OA from 0.85 to 0.89. In Florida–East, for the discrimination of the areas infested with wild oat patches, visible wavebands and several vegetation indices provided OA of 0.87 to 0.96. Estimated grass weed area ranged from 56 to 71%, 43 to 47%, and 69 to 80% of the field in the three locations, respectively, with per-class accuracies from 0.87 to 0.94. NDVI was the most efficient vegetation index, with a highly accurate performance in all locations. Our results suggest that mapping grass weed patches in wheat is feasible with high-resolution satellite imagery or aerial photography acquired 2 to 3 wk before crop senescence.


2012 ◽  
Vol 84 (2) ◽  
pp. 263-274 ◽  
Author(s):  
Fábio M. Breunig ◽  
Lênio S. Galvão ◽  
Antônio R. Formaggio ◽  
José C.N. Epiphanio

Directional effects introduce a variability in reflectance and vegetation index determination, especially when large field-of-view sensors are used (e.g., Moderate Resolution Imaging Spectroradiometer - MODIS). In this study, we evaluated directional effects on MODIS reflectance and four vegetation indices (Normalized Difference Vegetation Index - NDVI; Enhanced Vegetation Index - EVI; Normalized Difference Water Index - NDWI1640 and NDWI2120) with the soybean development in two growing seasons (2004-2005 and 2005-2006). To keep the reproductive stage for a given cultivar as a constant factor while varying viewing geometry, pairs of images obtained in close dates and opposite view angles were analyzed. By using a non-parametric statistics with bootstrapping and by normalizing these indices for angular differences among viewing directions, their sensitivities to directional effects were studied. Results showed that the variation in MODIS reflectance between consecutive phenological stages was generally smaller than that resultant from viewing geometry for closed canopies. The contrary was observed for incomplete canopies. The reflectance of the first seven MODIS bands was higher in the backscattering. Except for the EVI, the other vegetation indices had larger values in the forward scattering direction. Directional effects decreased with canopy closure. The NDVI was lesser affected by directional effects than the other indices, presenting the smallest differences between viewing directions for fixed phenological stages.


2019 ◽  
Vol 19 (8) ◽  
pp. 1685-1702 ◽  
Author(s):  
Juan José Martín-Sotoca ◽  
Antonio Saa-Requejo ◽  
Rubén Moratiel ◽  
Nicolas Dalezios ◽  
Ioannis Faraslis ◽  
...  

Abstract. Vegetation indices based on satellite images, such as the normalized difference vegetation index (NDVI), have been used in countries like the USA, Canada and Spain for damaged pasture and forage insurance over the last few years. This type of agricultural insurance is called satellite-index-based insurance (SIBI). In SIBI, the occurrence of damage is defined as normal distributions. In this work a pasture area at the north of the Community of Madrid (Spain) has been delimited by means of Moderate Resolution Imaging Spectroradiometer (MODIS) images. A statistical analysis of NDVI histograms was applied to seek for alternative distributions using the maximum likelihood method and χ2 test. The results show that the normal distribution is not the optimal representation and the generalized extreme value (GEV) distribution presents a better fit through the year based on a quality estimator. A comparison between normal and GEV is shown with respect to the probability under a NDVI threshold value throughout the year. This suggests that an a priori distribution should not be selected and a percentile methodology should be used to define a NDVI damage threshold rather than the average and standard deviation, typically of normal distributions. Highlights. The GEV distribution provides better fit to the NDVI historical observations than the normal one. Differences between normal and GEV distributions are higher during spring and autumn, which are transition periods in the precipitation regimen. NDVI damage threshold shows evident differences using normal and GEV distributions both covering the same probability (24.20 %). NDVI damage threshold values based on percentile calculation are proposed as an improvement in the index-based insurance in damaged pasture.


2019 ◽  
Vol 11 (15) ◽  
pp. 1823 ◽  
Author(s):  
Xiaojuan Huang ◽  
Jingfeng Xiao ◽  
Mingguo Ma

Satellite-derived vegetation indices (VIs) have been widely used to approximate or estimate gross primary productivity (GPP). However, it remains unclear how the VI-GPP relationship varies with indices, biomes, timescales, and the bidirectional reflectance distribution function (BRDF) effect. We examined the relationship between VIs and GPP for 121 FLUXNET sites across the globe and assessed how the VI-GPP relationship varied among a variety of biomes at both monthly and annual timescales. We used three widely-used VIs: normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), and 2-band EVI (EVI2) as well as a new VI - NIRV and used surface reflectance both with and without BRDF correction from the moderate resolution imaging spectroradiometer (MODIS) to calculate these indices. The resulting traditional (NDVI, EVI, EVI2, and NIRV) and BRDF-corrected (NDVIBRDF, EVIBRDF, EVI2BRDF, and NIRV, BRDF) VIs were used to examine the VI-GPP relationship. At the monthly scale, all VIs were moderate or strong predictors of GPP, and the BRDF correction improved their performance. EVI2BRDF and NIRV, BRDF had similar performance in capturing the variations in tower GPP as did the MODIS GPP product. The VIs explained lower variance in tower GPP at the annual scale than at the monthly scale. The BRDF-correction of surface reflectance did not improve the VI-GPP relationship at the annual scale. The VIs had similar capability in capturing the interannual variability in tower GPP as MODIS GPP. VIs were influenced by temperature and water stresses and were more sensitive to temperature stress than to water stress. VIs in combination with environmental factors could improve the prediction of GPP than VIs alone. Our findings can help us better understand how the VI-GPP relationship varies among indices, biomes, and timescales and how the BRDF effect influences the VI-GPP relationship.


2020 ◽  
Vol 12 (24) ◽  
pp. 4144
Author(s):  
José Luis Gallardo-Salazar ◽  
Marín Pompa-García

Modern forestry poses new challenges that space technologies can solve thanks to the advent of unmanned aerial vehicles (UAVs). This study proposes a methodology to extract tree-level characteristics using UAVs in a spatially distributed area of pine trees on a regular basis. Analysis included different vegetation indices estimated with a high-resolution orthomosaic. Statistically reliable results were found through a three-phase workflow consisting of image acquisition, canopy analysis, and validation with field measurements. Of the 117 trees in the field, 112 (95%) were detected by the algorithm, while height, area, and crown diameter were underestimated by 1.78 m, 7.58 m2, and 1.21 m, respectively. Individual tree attributes obtained from the UAV, such as total height (H) and the crown diameter (CD), made it possible to generate good allometric equations to infer the basal diameter (BD) and diameter at breast height (DBH), with R2 of 0.76 and 0.79, respectively. Multispectral indices were useful as tree vigor parameters, although the normalized-difference vegetation index (NDVI) was highlighted as the best proxy to monitor the phytosanitary condition of the orchard. Spatial variation in individual tree productivity suggests the differential management of ramets. The consistency of the results allows for its application in the field, including the complementation of spectral information that can be generated; the increase in accuracy and efficiency poses a path to modern inventories. However, the limitation for its application in forests of more complex structures is identified; therefore, further research is recommended.


2019 ◽  
Vol 11 (5) ◽  
pp. 1410 ◽  
Author(s):  
Suman Moparthy ◽  
Dominique Carrer ◽  
Xavier Ceamanos

The ability of spatial remote sensing in the visible domain to properly detect the slow transitions in the Earth’s vegetation is often a subject of debate. The reason behind this is that the satellite products often used to calculate vegetation indices such as surface albedo or reflectance, are not always correctly decontaminated from atmospheric effects. In view of the observed decline in vegetation over the Congo during the last decade, this study investigates how effectively satellite-derived variables can contribute to the answering of this question. In this study, we use two satellite-derived surface albedo products, three satellite-derived aerosol optical depth (AOD) products, two model-derived AOD products, and synthetic observations from radiative transfer simulations. The study discusses the important discrepancies (of up to 70%) found between these satellite surface albedo products in the visible domain over this region. We conclude therefore that the analysis of trends in vegetation properties based on satellite observations in the visible domain such as NDVI (normalized difference vegetation index), calculated from reflectance or albedo variables, is still quite questionable over tropical forest regions such as the Congo. Moreover, this study demonstrates that there is a significant increase (of up to 14%) in total aerosols within the last decade over the Congo. We note that if these changes in aerosol loads are not correctly taken into account in the retrieval of surface albedo, a greenness change of the surface properties (decrease of visible albedo) of around 8% could be artificially detected. Finally, the study also shows that neglecting strong aerosol emissions due to volcano eruptions could lead to an artificial increase of greenness over the Congo of more than 25% in the year of the eruptions and up to 16% during the 2–3 years that follow.


Sign in / Sign up

Export Citation Format

Share Document