scholarly journals Investigation of Airborne Particulate Matter in the Atmosphere of the Black Sea Coastal Zone Based on the Measured and Satellite Data

2021 ◽  
Vol 28 (3) ◽  
Author(s):  
А. V. Varenik ◽  
D. V. Kalinskaya ◽  
М. А. Myslina ◽  
◽  
◽  
...  

Purpose. One of the most pressing problems of large cities is air pollution resulting from presence of various large and fine particles in the air. These micro-particles can be transported by the air currents over considerable distances, as well as coagulate various substances also present in the atmosphere. The purpose of the work is to study the content of particulate matter of 2.5 and 10 microns (PM2.5 and PM10) in the atmosphere of Sevastopol, as well as the processes affecting their concentration. Methods and Results. During the period from February to June, 2020, the scientists of Marine Hydrophysical Institute (MHI), RAS measured mass concentration of PM2.5 and PM10 in Sevastopol using the “Atmas” dust analyzer. A total of 180 measurements of the micro-particle concentrations in the air of Sevastopol were done, and 60 values of the PM2.5 and PM10 daily average concentrations were obtained. To analyze the preferred aerosol type for the dates with high content of suspended particles in the air, the CALIPSO satellite data were used. It is shown that the smoke recorded in the Sevastopol atmosphere on 19.02.2020 could lead to increase of the PM10 particles concentration. A day before the increased concentrations of suspended particles were revealed in the Sevastopol atmospheric air, the CALYPSO satellite data on aerosol typing over the Black Sea had shown predominance of the smoke aerosol in the atmosphere over the region under study. Conclusions. The results of the investigation shows that in the atmosphere of Sevastopol, the cases when the PM2.5 and PM10 particles contents exceeded the maximum permissible daily average concentration by up to 3.4 times were detected. It was found that the main cause of air pollution with micro-particles in Sevastopol was the transfer both of air masses from the deserts in the African continent and Asia and the burning biomass aerosol (smoke). Air pollution with the PM10 particles caused by the local source, namely soil exсavation in immediate proximity to the air sampling point, was less significant.

2021 ◽  
Vol 37 (3) ◽  
Author(s):  
А. V. Varenik ◽  
D. V. Kalinskaya ◽  
М. А. Myslina ◽  
◽  
◽  
...  

Purpose. One of the most pressing problems of large cities is air pollution resulting from presence of various large and fine particles in the air. These micro-particles can be transported by the air currents over considerable distances, as well as coagulate various substances also present in the atmosphere. The purpose of the work is to study the content of particulate matter of 2.5 and 10 microns (PM2.5 and PM10) in the atmosphere of Sevastopol, as well as the processes affecting their concentration. Methods and Results. During the period from February to June, 2020, the scientists of Marine Hydrophysical Institute (MHI), RAS measured mass concentration of PM2.5 and PM10 in Sevastopol using the “Atmas” dust analyzer. A total of 180 measurements of the micro-particle concentrations in the air of Sevastopol were done, and 60 values of the PM2.5 and PM10 daily average concentrations were obtained. To analyze the preferred aerosol type for the dates with high content of suspended particles in the air, the CALIPSO satellite data were used. It is shown that the smoke recorded in the Sevastopol atmosphere on 19.02.2020 could lead to increase of the PM10 particles concentration. A day before the increased concentrations of suspended particles were revealed in the Sevastopol atmospheric air, the CALYPSO satellite data on aerosol typing over the Black Sea had shown predominance of the smoke aerosol in the atmosphere over the region under study. Conclusions. The results of the investigation show that in the atmosphere of Sevastopol, the cases when the PM2.5 and PM10 particles contents exceeded the maximum permissible daily average concentration by up to 3.4 times were detected. It was found that the main cause of air pollution with micro-particles in Sevastopol was the transfer both of the air masses from the deserts in the African continent and Asia, and the burning biomass aerosol (smoke). Air pollution with the PM10 particles caused by the local source, namely soil exсavation in immediate proximity to the air sampling point, was less significant.


Author(s):  
Alla Varenik ◽  
Alla Varenik ◽  
Sergey Konovalov ◽  
Sergey Konovalov

Atmospheric precipitations can be an important source of nutrients to open and coastal zones of marine ecosystem. Jickells [1] has published that atmospheric depositions can sup-port 5-25% of nitrogen required to primary production. Bulk atmospheric precipitations have been collected in a rural location at the Black Sea Crimean coast – Katsiveli settlement, and an urban location – Sevastopol city. Samples have been analyzed for inorganic fixed nitrogen (IFN) – nitrate, nitrite, and ammonium. Deposi-tions have been calculated at various space and time scales. The monthly volume weighted mean concentration of IFN increases from summer to winter in both locations. A significant local source of IFN has been revealed for the urban location and this source and its spatial influence have been quantified. IFN deposition with atmospheric precipitations is up to 5% of its background content in the upper 10 m layer of water at the north-western shelf of the Black Sea. Considering Redfield C:N ratio (106:16) and the rate of primary production (PP) in coastal areas of the Black Sea of about 100-130 g C m-2 year-1 we have assessed that average atmospheric IFN depositions may intensify primary production by 4.5% for rural locations, but this value is increased many-fold in urban locations due to local IFN sources.


Author(s):  
Alla Varenik ◽  
Alla Varenik ◽  
Sergey Konovalov ◽  
Sergey Konovalov

Atmospheric precipitations can be an important source of nutrients to open and coastal zones of marine ecosystem. Jickells [1] has published that atmospheric depositions can sup-port 5-25% of nitrogen required to primary production. Bulk atmospheric precipitations have been collected in a rural location at the Black Sea Crimean coast – Katsiveli settlement, and an urban location – Sevastopol city. Samples have been analyzed for inorganic fixed nitrogen (IFN) – nitrate, nitrite, and ammonium. Deposi-tions have been calculated at various space and time scales. The monthly volume weighted mean concentration of IFN increases from summer to winter in both locations. A significant local source of IFN has been revealed for the urban location and this source and its spatial influence have been quantified. IFN deposition with atmospheric precipitations is up to 5% of its background content in the upper 10 m layer of water at the north-western shelf of the Black Sea. Considering Redfield C:N ratio (106:16) and the rate of primary production (PP) in coastal areas of the Black Sea of about 100-130 g C m-2 year-1 we have assessed that average atmospheric IFN depositions may intensify primary production by 4.5% for rural locations, but this value is increased many-fold in urban locations due to local IFN sources.


2003 ◽  
Vol 48 (10) ◽  
pp. 135-142 ◽  
Author(s):  
D.Z. Seker ◽  
C. Goksel ◽  
S. Kabdasli ◽  
N. Musaoglu ◽  
S. Kaya

The Riva River is located on the Anatolian (Asian) side of Istanbul by the Black Sea coast, with a wonderful sandy beach and delta formation which has been selected as the study area. The Riva is the largest river in this region, which flows into the Black Sea and also gives its’ name to the area. The river carries some amount of sediments to the Black Sea. These particles cause considerable changes not only in the bed bathymetry and coastal boundaries of the river but also along the coastline of the Black Sea. The aim of this study is to determine these variations by means of satellite data and GIS. In the study, satellite images dated 1975, 1984, 1992 and 2001 have been used. At the end of the study, the possibility of observing bathymetric changes in front of the coastline by means of satellite data has been investigated and results were evaluated and visualised by means of GIS.


2019 ◽  
Author(s):  
Ekaterina Batchvarova ◽  
Claudia Calidonna ◽  
Maria Kolarova ◽  
Ivano Ammoscato ◽  
Damyan Barantiev ◽  
...  

Author(s):  
Zhiyu Fan ◽  
Qingming Zhan ◽  
Chen Yang ◽  
Huimin Liu ◽  
Meng Zhan

Due to the suspension of traffic mobility and industrial activities during the COVID-19, particulate matter (PM) pollution has decreased in China. However, rarely have research studies discussed the spatiotemporal pattern of this change and related influencing factors at city-scale across the nation. In this research, the clustering patterns of the decline rates of PM2.5 and PM10 during the period from 20 January to 8 April in 2020, compared with the same period of 2019, were investigated using spatial autocorrelation analysis. Four meteorological factors and two socioeconomic factors, i.e., the decline of intra-city mobility intensity (dIMI) representing the effect of traffic mobility and the decline rates of the secondary industrial output values (drSIOV), were adopted in the regression analysis. Then, multi-scale geographically weighted regression (MGWR), a model allowing the particular processing scale for each independent variable, was applied for investigating the relationship between PM pollution reductions and influencing factors. For comparison, ordinary least square (OLS) regression and the classic geographically weighted regression (GWR) were also performed. The research found that there were 16% and 20% reduction of PM2.5 and PM10 concentration across China and significant PM pollution mitigation in central, east, and south regions of China. As for the regression analysis results, MGWR outperformed the other two models, with R2 of 0.711 and 0.732 for PM2.5 and PM10, respectively. The results of MGWR revealed that the two socioeconomic factors had more significant impacts than meteorological factors. It showed that the reduction of traffic mobility caused more relative declines of PM2.5 in east China (e.g., cities in Jiangsu), while it caused more relative declines of PM10 in central China (e.g., cities in Henan). The reduction of industrial operation had a strong relationship with the PM10 drop in northeast China. The results are crucial for understanding how the decline pattern of PM pollution varied spatially during the COVID-19 outbreak, and it also provides a good reference for air pollution control in the future.


2017 ◽  
Vol 14 ◽  
pp. 1-13
Author(s):  
Olga Yu. Lavrova ◽  
Marina I. Mityagina ◽  
Andrey G. Kostianoy ◽  
Mikhail A. Strochkov

Results of multiyear monitoring of zones of persistent ecological risk in the Black Sea are presented. These ones are most affected by oil pollution, raised concentration of suspended particulate matter and harmful algae bloom. Studies are based on satellite remote sensing data obtained over the Black Sea from 2000 to 2017 from radar sensors ERS-2 SAR, Envisat ASAR, Sentinel -1A, -B, Radarsat 2, TerraSAR-X; visible and infrared data from Envisat  MERIS, Landsat-5 TM, Landsat-7 ETM+, Landsat-8 OLI,  MSI Sentinel-2A and Terra/Aqua Modis. An analysis of radar data indicated areas most affected by ship spills of bilge waters. Greatest polluted area were found along the main ship routes, near biggest ports and at sites of anchor positions.It is necessary to separate anthropogenic oil pollution and oil-containing slicks caused by natural hydrocarbon seeps including mud volcanoes, natural gas and oil outflows from the sea bottom, and gas hydrates. The geographical distribution of these slicks is defined by their permanent locations that well correlate with locations of natural hydrocarbon seeps from the sea bottom in this region.Areas characterized by increased concentration of suspended particulate matter were revealed at maps compiled from Envisat MERIS, MSI Sentinel-2A data and Landsat colour composites. Among the most notable ones are river plume zones, first of all, those of the Danube River and mountain rivers of Georgia. Results of satellite data processing were used for detecting impacts of various natural factors, such as precipitation, rivers flows, wind-driven water circulation and vortex activity, on suspended matter proliferation. Mapping of zones of maximum propagation of suspended solids in different seasons was performed for the examined areas. Eutrophication has recently become a very important problem worldwide. It is true also for the Black Sea, especially for its western part.


Sign in / Sign up

Export Citation Format

Share Document