Free L-algebras

1969 ◽  
Vol 34 (3) ◽  
pp. 475-480 ◽  
Author(s):  
Alfred Horn

Dummett's LC [1] is a system which characterizes all formulas of the propositional calculus which are valid in every chain (for definitions and notation see the first section of [2]). An L-algebra is a Heyting algebra in which (x → y) + (y → x) = 1 for all x, y. L-algebras bear the same relation to LC as Boolean algebras to the classical propositional calculus and Heyting algebras to the intuitionist propositional calculus.

1992 ◽  
Vol 57 (1) ◽  
pp. 33-52 ◽  
Author(s):  
Andrew M. Pitts

AbstractWe prove the following surprising property of Heyting's intuitionistic propositional calculus, IpC. Consider the collection of formulas, ϕ, built up from propositional variables (p, q, r, …) and falsity (⊥) using conjunction (∧), disjunction (∨) and implication (→). Write ⊢ϕ to indicate that such a formula is intuitionistically valid. We show that for each variable p and formula ϕ there exists a formula Apϕ (effectively computable from ϕ), containing only variables not equal to p which occur in ϕ, and such that for all formulas ψ not involving p, ⊢ψ → Apϕ if and only if ⊢ψ → ϕ. Consequently quantification over propositional variables can be modelled in IpC, and there is an interpretation of the second order propositional calculus, IpC2, in IpC which restricts to the identity on first order propositions.An immediate corollary is the strengthening of the usual interpolation theorem for IpC to the statement that there are least and greatest interpolant formulas for any given pair of formulas. The result also has a number of interesting consequences for the algebraic counterpart of IpC, the theory of Heyting algebras. In particular we show that a model of IpC2 can be constructed whose algebra of truth-values is equal to any given Heyting algebra.


Author(s):  
A. Salibra ◽  
A. Bucciarelli ◽  
A. Ledda ◽  
F. Paoli

Abstract We introduce Boolean-like algebras of dimension n ($$n{\mathrm {BA}}$$ n BA s) having n constants $${{{\mathsf {e}}}}_1,\ldots ,{{{\mathsf {e}}}}_n$$ e 1 , … , e n , and an $$(n+1)$$ ( n + 1 ) -ary operation q (a “generalised if-then-else”) that induces a decomposition of the algebra into n factors through the so-called n-central elements. Varieties of $$n{\mathrm {BA}}$$ n BA s share many remarkable properties with the variety of Boolean algebras and with primal varieties. The $$n{\mathrm {BA}}$$ n BA s provide the algebraic framework for generalising the classical propositional calculus to the case of n–perfectly symmetric–truth-values. Every finite-valued tabular logic can be embedded into such a n-valued propositional logic, $$n{\mathrm {CL}}$$ n CL , and this embedding preserves validity. We define a confluent and terminating first-order rewriting system for deciding validity in $$n{\mathrm {CL}}$$ n CL , and, via the embeddings, in all the finite tabular logics.


2009 ◽  
Vol 16 (1) ◽  
pp. 29-47
Author(s):  
Guram Bezhanishvili ◽  
Patrick J. Morandi

Abstract This paper surveys recent developments in the theory of profinite Heyting algebras (resp. bounded distributive lattices, Boolean algebras) and profinite completions of Heyting algebras (resp. bounded distributive lattices, Boolean algebras). The new contributions include a necessary and sufficient condition for a profinite Heyting algebra (resp. bounded distributive lattice) to be isomorphic to the profinite completion of a Heyting algebra (resp. bounded distributive lattice). This results in simple examples of profinite bounded distributive lattices that are not isomorphic to the profinite completion of any bounded distributive lattice. We also show that each profinite Boolean algebra is isomorphic to the profinite completion of some Boolean algebra. It is still an open question whether each profinite Heyting algebra is isomorphic to the profinite completion of some Heyting algebra.


2010 ◽  
Vol 20 (3) ◽  
pp. 359-393 ◽  
Author(s):  
GURAM BEZHANISHVILI ◽  
NICK BEZHANISHVILI ◽  
DAVID GABELAIA ◽  
ALEXANDER KURZ

We introduce pairwise Stone spaces as a bitopological generalisation of Stone spaces – the duals of Boolean algebras – and show that they are exactly the bitopological duals of bounded distributive lattices. The category PStone of pairwise Stone spaces is isomorphic to the category Spec of spectral spaces and to the category Pries of Priestley spaces. In fact, the isomorphism of Spec and Pries is most naturally seen through PStone by first establishing that Pries is isomorphic to PStone, and then showing that PStone is isomorphic to Spec. We provide the bitopological and spectral descriptions of many algebraic concepts important in the study of distributive lattices. We also give new bitopological and spectral dualities for Heyting algebras, thereby providing two new alternatives to Esakia's duality.


1957 ◽  
Vol 22 (2) ◽  
pp. 176-186 ◽  
Author(s):  
E. J. Lemmon

The main aims of this paper are firstly to present new and simpler postulate sets for certain well-known systems of modal logic, and secondly, in the light of these results, to suggest some new or newly formulated calculi, capable of interpretation as systems of epistemic or deontic modalities. The symbolism throughout is that of [9] (see especially Part III, Chapter I). In what follows, by a Lewis modal system is meant a system which (i) contains the full classical propositional calculus, (ii) is contained in the Lewis system S5, (iii) admits of the substitutability of tautologous equivalents, (iv) possesses as theses the four formulae:We shall also say that a system Σ1 is stricter than a system Σ2, if both are Lewis modal systems and Σ1 is contained in Σ2 but Σ2 is not contained in Σ1; and we shall call Σ1absolutely strict, if it possesses an infinity of irreducible modalities. Thus, the five systems of Lewis in [5], S1, S2, S3, S4, and S5, are all Lewis modal systems by this definition; they are in an order of decreasing strictness from S1 to S5; and S1 and S2 alone are absolutely strict.


2020 ◽  
Vol 2 (4) ◽  
pp. 600-616
Author(s):  
Andrea Oldofredi

It is generally accepted that quantum mechanics entails a revision of the classical propositional calculus as a consequence of its physical content. However, the universal claim according to which a new quantum logic is indispensable in order to model the propositions of every quantum theory is challenged. In the present essay, we critically discuss this claim by showing that classical logic can be rehabilitated in a quantum context by taking into account Bohmian mechanics. It will be argued, indeed, that such a theoretical framework provides the necessary conceptual tools to reintroduce a classical logic of experimental propositions by virtue of its clear metaphysical picture and its theory of measurement. More precisely, it will be shown that the rehabilitation of a classical propositional calculus is a consequence of the primitive ontology of the theory, a fact that is not yet sufficiently recognized in the literature concerning Bohmian mechanics. This work aims to fill this gap.


1992 ◽  
Vol 57 (3) ◽  
pp. 988-991 ◽  
Author(s):  
Devdatt P. Dubhashi

In this paper we present a new proof of a decidability result for the firstorder theories of certain subvarieties of Heyting algebras. By a famous result of Grzegorczyk, the full first-order theory of Heyting algebras is undecidable. In contrast, the first-order theory of Boolean algebras and of many interesting subvarieties of Boolean algebras is decidable by a result of Tarski [8]. In fact, Kozen [6] gives a comprehensive quantitative classification of the complexities of the first-order theories of various subclasses of Boolean algebras (including the full variety).This stark contrast may be reconciled from the standpoint of universal algebra as arising out of the byplay between structure and decidability: A good structure theory entails positive decidability results. Boolean algebras have a well-developed structure theory [5], while the corresponding theory for Heyting algebras is quite meagre. Viewed in this way, we may hope to obtain decidability results if we focus attention on subclasses of Heyting algebras with good structural properties.K. Idziak and P. M. Idziak [4] have considered an interesting subvariety of Heyting algebras, , which is the variety generated by all linearly-ordered Heyting algebras. This variety is shown to be the largest subvariety of Heyting algebras with a decidable theory of its finite members. However their proof is rather indirect, proceeding via semantic interpretation into the monadic second order theory of trees. The latter is a powerful theory—it interprets many other theories—but is computationally highly infeasible. In fact, by a celebrated theorem of Rabin, its complexity is not bounded by any elementary recursive function. Consequently, the proof of [4], besides being indirect, also gives no information on the quantitative computational complexity of the theory of .Here we pursue the theme of structure and decidability. We isolate the indecomposable algebras in and use this to prove a theorem on the structure of if -algebras. This theorem relates the -algebras structurally to Boolean algebras. This enables us to bootstrap the known decidability results for Boolean algebras to the variety if .


1968 ◽  
Vol 33 (1) ◽  
pp. 27-38 ◽  
Author(s):  
R. A. Bull

In [2] Prior puts forward a tense logic, GH1, which is intended to axiomatise tense logic with time linear and rational; he also contemplates the tense logic with time linear and real. The purpose of this paper is to give completeness proofs for three axiom systems, GH1, GHlr, GHli, with respect to tense logic with time linear and rational, real, and integral, respectively.1 In a fourth section I show that GH1 and GHlr have the finite model property, but that GHli lacks it.GH1 has the operators of the classical propositional calculus, together with operators P, H, F, G for ‘It has been the case that’, ‘It has always been the case that’, ‘It will be the case that’, ‘It will always be the case that’, respectively.


Sign in / Sign up

Export Citation Format

Share Document