scholarly journals Effect of Ceramic Etching Protocols on Resin Bond Strength to a Feldspar Ceramic

2015 ◽  
Vol 40 (2) ◽  
pp. E40-E46 ◽  
Author(s):  
MA Bottino ◽  
A Snellaert ◽  
CD Bergoli ◽  
M Özcan ◽  
MC Bottino ◽  
...  

SUMMARY This study sought to evaluate the resin microtensile bond strength (MTBS) stability of a leucite-reinforced ceramic after different ceramic etching protocols. The microtensile test had 40 ceramic blocks (5×5×6 mm) assigned to five groups (n=8), in accordance with the following surface etching protocols: NE nonetched (control); 9HF: hydrofluoric (HF) acid etching (9%HF)+wash/dry; 4HF: 4%HF+wash/dry; 5HF: 5%HF+wash/dry; and 5HF+N: 5%HF+neutralizer+wash/dry+ultrasonic-cleaning. Etched ceramic surfaces were treated with a silane agent. Next, resin cement blocks were built on the prepared ceramic surface and stored for 24 hours in distilled water at 37°C. The specimens were then sectioned to obtain microtensile beams (32/block), which were randomly assigned to the following conditions, nonaged (immediate test) and aged (water storage for 150 days plus 12,000 thermal cycles), before the microtensile test. Bond strength data were submitted to one-way analysis of variance and Tukey test (α=0.05). Additional ceramic samples were subjected to the different ceramic etching protocols and evaluated using a scanning electron microscope (n=2) and atomic force microscopy (n=2). Aging led to a statistically significant decrease in the MTBS for all groups, except the untreated one (NE). Among the groups submitted to the same aging conditions, the untreated (NE) revealed inferior MTBS values compared to the 9HF and 4HF groups. The 5HF and 5HF+N groups had intermediate mean values, being statistically similar to the higher values presented by the 9HF and 4HF groups and to the lower value associated with the NE group. The neutralization procedure did not enhance the ceramic/resin cement bond strength. HF acid etching is a crucial step in resin/ceramic bonding.

Author(s):  
Ayman Mohammed Said

Purpose: To evaluate the effect of aging and different surface treatments on micro-shear bond strength of two resin cements to resin nano-ceramic composite blocks using an in-vitro study. Materials and methods: Blocks of resin nano-ceramic (Lava Ultimate, 3M, St Paul, Minnesota, USA) were used to prepare eight plates having the following dimensions: (14mm × 12mm × 2mm). After plates preparation they were assigned to two main groups according to the surface treatment applied, either hydrofluoric acid etching and silane or sandblasting and silane. Scanning electron microscope (SEM) was used to analyze the surface topography of the Lava-Ultimate plates before and after application of surface treatments. Two resin cements were used; dual cured adhesive resin cement (Bifix QM, VOCO, Cuxhafen, Germany) and dual cured self-adhesive resin cement (Bifix SE, VOCO, Cuxhafen, Germany) to create a five resin micro-cylinders received on each lava ultimate plate. Ten specimens from each subgroup were tested after 24 hours and the other ten specimens were tested after aging in saline for 6 months. Micro-shear bond strength test was applied until failure. . Multi-factorial ANOVA test and One-way ANOVA followed by pair-wise Tukey’s post-hoc tests were used to analyze the data. Results: Both resin cements showed statistically significant decrease on bond strength after aging. Before aging, both surface treatments with adhesive resin cement showed statistically significant higher micro-shear bond strength mean values than with self-adhesive resin cement. After aging sandblasting showed a statistically significant higher micro-shear bond strength mean values with adhesive resin cement, while hydrofluoric acid etching revealed a statistically non-significant higher values with adhesive resin cement than self-adhesive resin cement. Conclusion: For both surface treatments and resin cements aging had a detrimental effect on micro- shear bond strength.


2016 ◽  
Vol 19 (1) ◽  
pp. 88
Author(s):  
Sabrina Alves Feitosa ◽  
Isabela Gomes Moura ◽  
Pedro Henrique Corazza ◽  
Cesar Dalmolin Bergolli ◽  
Clóvis Pagani ◽  
...  

<p><strong>O</strong><span lang="en-US"><strong>bjective: </strong></span><span lang="en-US">This study evaluated the effect of drying times of two total-etch &amp; rinse adhesives on the resin bond strength to a feldsphatic ceramic, before and after aging. </span><span lang="en-US"><strong>Material and Methods: </strong></span><span lang="en-US">Feldsphatic-ceramic CAD-CAM bars were cut into blocks (12×10×4 mm) with a cutting machine (N = 32). </span><span lang="en-US">Impressions were made of each ceramic block with silicone putty material and the negative space was filled with a composite resin.</span><span lang="en-US"> The bonding ceramic surface was etched with hydrofluoric acid, silanized, and the adhesive system (SB- Single Bond 2, 3M-ESPE; or PB- Prime &amp; Bond NT, Dentsply) was applied. The samples were dried at different times (5, 10 and 15 s) before the cementation. The resin and ceramic blocks were cemented by a dual cure resin cement. All samples were stored in distilled water at 37 °C for 24 h. For the μ-TBS test, the samples were sliced into microbars. Half of the bars of each block was tested after 24 h and, the other bars </span><span lang="en-US">were submitted to thermocycling (12,000×) and water storage (150 d)</span><span lang="en-US">. For the 24 h groups, the longer drying time increased (p &lt; 0.05) the bond strength of SB (water/alcohol adhesive), while reduced (p &lt; 0.05) for the PB group (acetone based adhesive). </span><span lang="en-US"><strong>Results: </strong></span><span lang="en-US">For the aged groups, the bond strength for the different drying times had no significant difference, for the both adhesives. </span><span lang="en-US"><strong>Conclusion:</strong></span><span lang="en-US"> Longer drying times increased the bond strength values of SB. Smaller drying times increased the bond strength values of PB. The aging protocol influenced the bond strength of SB groups.</span></p><p class="western"> </p><p class="western" lang="pt-BR"><span><span><span lang="en-US"><strong>Keywords:</strong></span></span></span><span><span><span lang="en-US"><span> Microtensile; Adhesion; Feldspar ceramic; Drying time; Adhesive system.</span></span></span></span></p>


2005 ◽  
Vol 13 (1) ◽  
pp. 53-57 ◽  
Author(s):  
Osvaldo Daniel Andreatta Filho ◽  
Maria Auxiliadora Junho de Araújo ◽  
Marco Antonio Bottino ◽  
Renato Sussumu Nishioka ◽  
Marcia Maciel Menezes

This study evaluated the effect of thermocycling on the bond strength between Procera AllCeram (Nobel-Biocare) and a resin cement (Panavia F, Kuraray CO). Nine ceramic blocks with dimensions of 5x6x6mm were conditioned at one face with Rocatec System (Espe). After, they were luted with Panavia F to composite resin blocks (Clearfil AP-X, Kuraray CO). The nine groups formed by ceramic, cement and composite resin were split up obtaining 75 samples with dimensions of 12x1x1mm and adhesive surface presenting 1mm²±0.1mm² of area. The samples were divided into 3 groups (n=25): G1 - 14 days in distilled water at 37ºC; G2 - 6,000 cycles in water (5ºC - 55ºC - 30s); G3 - 12,000 cycles in water (5ºC - 55ºC - 30s). The samples were tested in a universal testing machine (EMIC) at a crosshead speed of 1mm/min. Data were analyzed by ANOVA and Tukey tests. The results indicated that mean values of rupture tension (MPa) of G1 (10.71 ± 3.54) did not differ statistically (p <5%) from G2 (9.01 ± 3.90), however there was statistical difference between G1 and G3 (7.28 ± 3.00). It was concluded that thermocycling significantly reduced the bond strength values when samples were submitted to 12,000 cycles.


2018 ◽  
Vol 47 (6) ◽  
pp. 348-353
Author(s):  
Arthur Chaves SIMÕES ◽  
Jean Soares MIRANDA ◽  
Rodrigo Othávio de Assunção e SOUZA ◽  
Estevão Tomomitsu KIMPARA ◽  
Fabíola Pessôa Pereira LEITE

Abstract Introduction Despite being one of the most studied ceramics today, zirconia still does not have a well-defined adhesion protocol. Objective Evaluate the influence of different etching times and hydrofluoric acid (HF) concentrations on the zirconia surface and bond strength between a vitrified Y-TZP ceramic and a resin cement. Materials and method The zirconia surface treatments were: sandblasting with silica-coated alumina (Co); glaze application + 5% HF etching for 5s (G5-5s), 10s (G5-10s) or 20s (G5-20s); glaze application + 10% HF etching for 5s (G10-5s), 10 (G10-10s) or 20s (G10-20s) . Then, cement cylinders (3.3 × 3.3 mm) were built up for shear bond test on all specimens. The specimens were subjected to 6000 thermal cycling before the test. Fractures were analyzed by stereomicroscope. Data were statistically analyzed by Kruskal-Wallis and Dunn statistical tests (5%). Extra samples of each group were made to obtain profilometry and scanning electron microscopy (SEM). Result Zirconia-cement bond strength was affected by the ceramic surface treatments (p = 0.001). G10-5s (2.71 MPa) recorded the highest bond strength values, followed by the Co (2.05 MPa) while G5 groups had the lowest bond value. Adhesive failure of the samples predominated. The image analysis revealed G5 groups seem to have a lower roughness when compared to groups treated by 10% HF. The creation of pores in the low-fusing porcelain glass layer surface occurred only when 10% HF was used. Conclusion The low-fusing porcelain glass layer application was able to overcome the sandblasting and obtain a greater adhesive bond to the resinous cement, however, only when 10% HF was used for an interval of 5 seconds.


2013 ◽  
Vol 38 (2) ◽  
pp. 208-217 ◽  
Author(s):  
GB Guarda ◽  
AB Correr ◽  
LS Gonçalves ◽  
AR Costa ◽  
GA Borges ◽  
...  

SUMMARY Objectives The aim of this present study was to investigate the effect of two surface treatments, fatigue and thermocycling, on the microtensile bond strength of a newly introduced lithium disilicate glass ceramic (IPS e.max Press, Ivoclar Vivadent) and a dual-cured resin cement. Methods A total of 18 ceramic blocks (10 mm long × 7 mm wide × 3.0 mm thick) were fabricated and divided into six groups (n=3): groups 1, 2, and 3—air particle abraded for five seconds with 50-μm aluminum oxide particles; groups 4, 5, and 6—acid etched with 10% hydrofluoric acid for 20 seconds. A silane coupling agent was applied onto all specimens and allowed to dry for five seconds, and the ceramic blocks were bonded to a block of composite Tetric N-Ceram (Ivoclar Vivadent) with RelyX ARC (3M ESPE) resin cement and placed under a 500-g static load for two minutes. The cement excess was removed with a disposable microbrush, and four periods of light activation for 40 seconds each were performed at right angles using an LED curing unit (UltraLume LED 5, Ultradent) with a final 40 second light exposure from the top surface. All of the specimens were stored in distilled water at 37°C for 24 hours. Groups 2 and 5 were submitted to 3,000 thermal cycles between 5°C and 55°C, and groups 3 and 6 were submitted to a fatigue test of 100,000 cycles at 2 Hz. Specimens were sectioned perpendicular to the bonding area to obtain beams with a cross-sectional area of 1 mm2 (30 beams per group) and submitted to a microtensile bond strength test in a testing machine (EZ Test) at a crosshead speed of 0.5 mm/min. Data were submitted to analysis of variance and Tukey post hoc test (p≤0.05). Results The microtensile bond strength values (MPa) were 26.9 ± 6.9, 22.2 ± 7.8, and 21.2 ± 9.1 for groups 1–3 and 35.0 ± 9.6, 24.3 ± 8.9, and 23.9 ± 6.3 for groups 4–6. For the control group, fatigue testing and thermocycling produced a predominance of adhesive failures. Fatigue and thermocycling significantly decreased the microtensile bond strength for both ceramic surface treatments when compared with the control groups. Etching with 10% hydrofluoric acid significantly increased the microtensile bond strength for the control group.


2012 ◽  
Vol 37 (2) ◽  
pp. 181-187 ◽  
Author(s):  
TA Valentino ◽  
GA Borges ◽  
LH Borges ◽  
JA Platt ◽  
L Correr-Sobrinho

Clinical Relevance Treatment of yttrium-stabilized tetragonal zirconia ceramic surfaces with a low-fusing porcelain layer as a glaze significantly increased the bond strength of dual-cure resin cement to the ceramic surface.


2018 ◽  
Vol 43 (4) ◽  
pp. 372-379 ◽  
Author(s):  
JPM Tribst ◽  
LC Anami ◽  
M Özcan ◽  
MA Bottino ◽  
RM Melo ◽  
...  

SUMMARY This study tested whether a self-etching surface agent and the conventional hydrofluoric acid (HF) would provide the same bonding capacity between resin cement and feldspathic (Fd) and lithium disilicate (Ld) ceramics. Ceramic blocks were cut with a low-speed diamond saw with water cooling (Isomet 1000, Buehler, Lake Bluff, IL, USA) into 20 blocks of 5 × 7 × 4 mm, which were ground flat in a polishing machine (EcoMet/AutoMet 250, Buehler) under water cooling. The blocks were randomly divided into eight groups (n=5), according to ceramic type (Ld or Fd), surface conditioning (HF + Monobond Plus or Etch and Prime), and aging by thermocycling (TC or absence-baseline). After 24 hours in 37°C distilled water, blocks were embedded into acrylic resin and 1-mm2 cross-section beams composed of ceramic/cement/composite were obtained. The microtensile test was performed in a universal testing machine (DL-1000, EMIC, São José dos Campos, Brazil; 0.5 mm.min−1, 50 kgf load cell). Bond strength (MPa) was calculated by dividing the load at failure (in N) by the bonded area (mm2). The fractured specimens were examined under stereomicroscopy, and one representative sample of each group was randomly selected before the cementation and was further used for analysis using scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS). The self-etching agent showed the highest bond strength for Fd (24.66±4.5) and Ld (24.73±6.9) ceramics and a decrease in surface wettability. SEM and EDS showed the presence of similar components in the tested materials with different topographies for both. Therefore, the self-etching primer was able to deliver even higher bonding than HF+silane to a resin cement.


2014 ◽  
Vol 39 (1) ◽  
pp. 50-63 ◽  
Author(s):  
A Vanderlei ◽  
MA Bottino ◽  
LF Valandro

SUMMARY The purpose of this study was to evaluate the effect of different surface treatments of yttria-stabilized tetragonal zirconia (Y-TZP) on bond strength durability and marginal discrepancies. For adhesion testing, 144 specimens of VITA In-Ceram YZ ceramic for InLab were obtained (5.25×3.75×4.5 mm) and divided into six groups (n=24) according to the surface treatment: 1) Control (CRTL): untreated; 2) SIL: tribochemical silica coating (CoJet system, 3M/ESPE AG); 3) V1+HF: spray application of low-fusing porcelain glaze (V1, VITA Akzent Spray Glaze) followed by etching with hydrofluoric acid (HF) (one minute); 4) V1+SIL: V1 glazing (VITA Akzent Spray Glaze) followed by tribochemical silica coating; 5) V2+HF: brush application of low-fusing porcelain glaze (VITA Akzent Glaze) plus etching with HF (one minute); and 6) V2+SIL: V2 glazing (VITA Akzent Glaze) plus tribochemical silica coating. After all treatments, the surfaces were silanized for five minutes (ESPE-SIL) and cementation was performed using Panavia F (Kuraray). Half of the specimens in each treatment were tested 24 hours after cementation (dry), with the other half subjected to storage (150 days) and thermocycling (12,000×) (aging), and then a shear test was carried out (1 mm/min). The micromorphological (digital optical profilometry and scanning electron microscopy) and elemental analyses of the treated surfaces were performed. The inner surfaces of 60 Y-TZP infrastructures were conditioned and marginal fit was evaluated. The statistical analysis revealed that the groups treated via surface glaze application followed by hydrofluoric acid etching and silanization showed the highest bond strength (in dry and aging conditions), but the bond strengths were affected by aging. The highest marginal discrepancies were observed in the groups receiving glaze (117.4 ± 29.6 to 105.8 ± 12.2 μm) when compared to other groups (55.3 ± 8.7 and 55 ± 8.5 μm). Low-fusing porcelain glaze + hydrofluoric acid etching changed the morphology of the Y-TZP ceramic and improved the adhesion to the resin cement, but obtaining high and stable bond values to Y-TZP remains challenging. Marginal discrepancies increased with glazing.


2015 ◽  
Vol 20 (4) ◽  
pp. 51-56 ◽  
Author(s):  
João Paulo Fragomeni Stella ◽  
Andrea Becker Oliveira ◽  
Lincoln Issamu Nojima ◽  
Mariana Marquezan

OBJECTIVE: To assess four different chemical surface conditioning methods for ceramic material before bracket bonding, and their impact on shear bond strength and surface integrity at debonding.METHODS: Four experimental groups (n = 13) were set up according to the ceramic conditioning method: G1 = 37% phosphoric acid etching followed by silane application; G2 = 37% liquid phosphoric acid etching, no rinsing, followed by silane application; G3 = 10% hydrofluoric acid etching alone; and G4 = 10% hydrofluoric acid etching followed by silane application. After surface conditioning, metal brackets were bonded to porcelain by means of the Transbond XP system (3M Unitek). Samples were submitted to shear bond strength tests in a universal testing machine and the surfaces were later assessed with a microscope under 8 X magnification. ANOVA/Tukey tests were performed to establish the difference between groups (α= 5%).RESULTS: The highest shear bond strength values were found in groups G3 and G4 (22.01 ± 2.15 MPa and 22.83 ± 3.32 Mpa, respectively), followed by G1 (16.42 ± 3.61 MPa) and G2 (9.29 ± 1.95 MPa). As regards surface evaluation after bracket debonding, the use of liquid phosphoric acid followed by silane application (G2) produced the least damage to porcelain. When hydrofluoric acid and silane were applied, the risk of ceramic fracture increased.CONCLUSIONS: Acceptable levels of bond strength for clinical use were reached by all methods tested; however, liquid phosphoric acid etching followed by silane application (G2) resulted in the least damage to the ceramic surface.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Spartak Spasov Yanakiev ◽  
Mirela Borislavova Marinova-Takorova

A four-year follow-up of a novel silane heat treatment method for bonding lithium disilicate overlays to tooth structures without hydrofluoric acid etching of the ceramic surface is presented in this case report. Silane heat treatment modifies the silane layer and thus enhances resin ceramic bond strength without hydrofluoric acid etching. The standard ceramic preparation technique prior to bonding silicate ceramics to tooth structure is hydrofluoric acid etching and applying a silane coupling agent, followed by dental adhesive. In this case, the micromechanical roughening of the ceramic surface was performed by air abrasion with Al2O3. Silane heat treatment with constant 120°C airflow, applied for 60 sec, followed by dental adhesive application enhanced the resin-ceramic bond strength. After a four-year follow-up, the restorations’ clinical appearance could be defined as excellent/very good according to the FDI clinical criteria for the evaluation of direct and indirect restorations. This clinical result supports many in vitro studies regarding the resin-ceramic bond strength and durability obtained through postsilanization heat treatment.


Sign in / Sign up

Export Citation Format

Share Document