Millimeter-Wave Quad-Port Multiple-Input Multiple-Output Dielectric Resonator Antenna Excited Differentially by TE20 Mode Substrate Integrated Waveguide

Author(s):  
Abhishek Sharma ◽  
Anirban Sarkar ◽  
Animesh Biswas ◽  
M. Jaleel Akhtar
Author(s):  
S. Salihah ◽  
M. H. Jamaluddin ◽  
R. Selvaraju ◽  
M. N. Hafiz

In this article, a Multiple-Input-Multiple-Output (MIMO) H-shape Dielectric Resonator Antenna (DRA) is designed and simulated at 2.6 GHz for 4G applications. The proposed structure consists of H-shape DRA ( =10) which is mounted on FR4 substrate ( =4.6), and feed by two different feeding mechanisms. First, microstrip with slot coupling as Port 1. Second, coaxial probe as Port 2. The electrical properties of the proposed MIMO H-shape DRA in term of return loss, bandwidth and gain are completely obtained by using CST Microwave Studio Suite Software. The simulated results demonstrated a return loss more than 20 dB, an impedance bandwidth of 26 % (2.2 – 2.9 GHz), and gain of 6.11 dBi at Port 1. Then, a return loss more than 20 dB, an impedance bandwidth of 13 % (2.2 – 2.7 GHz), and gain of 6.63 dBi at Port 2. Both ports indicated impedance bandwidth more than 10 %, return loss lower than 20 dB, and gain more than 10 dBi at 2.6 GHz. The simulated electrical properties of the proposed design show a good potential for LTE applications.


2015 ◽  
Vol 77 (10) ◽  
Author(s):  
Nuramirah Mohd Nor ◽  
Mohd Haizal Jamaluddin

In this paper, a dual band multiple-input-multiple-output dielectric resonator antenna for wireless local area network application is presented. Two identical feeding techniques are used to feed the proposed antenna. The simulated impedance bandwidth for both port are the same which are 6.5% at 2.45 GHz and 3% at 5.2 GHz. The DRA also has an acceptable value of isolation over the operating frequency. The simulated S-parameter and other multiple-input-multiple-output parameters are studied and observed.


Author(s):  
Amirul Aizat Zolkefli ◽  
Badrul Hisham Ahmad ◽  
Noor Azwan Shairi ◽  
Adib Othman ◽  
Zahriladha Zakaria ◽  
...  

A single pole double throw (SPDT) discrete switch design using switchable substrate integrated waveguide (SIW) resonators is proposed in this paper. It was designed for the millimeter wave multiple input multiple output (MIMO) transceiver. An example application is for 5G communication in 26 GHz band. High isolation between transmitter and receiver (in the transceiver) is needed in SPDT switch design to minimize any high radio frequency (RF) power leakage in the receiver. Therefore, the use of switchable SIW resonators can achieve higher isolation if compared to the conventional series SPDT switch, where the isolation of the proposed SPDT is depend on the bandstop response of the SIW resonators. The switchable SIW resonators can be switched between allpass and bandstop responses to allow the operation between transmit and receive modes. As a result, the simulation and measurement showed that the proposed SPDT switch produced an isolation higher than 25 dB from 24.25 to 27.5 GHz compared to the conventional design.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sachin Kumar Yadav ◽  
Amanpreet Kaur ◽  
Rajesh Khanna

Abstract In this article, cross-shaped metallic parasitic strips based two radiator element multiple-input multiple-output (MIMO) dielectric resonator antenna (DRA) is excited by quadrature wave transformer microstrip feedline, designed, simulated and fabricated for ultra-wideband (UWB) applications. The proposed MIMO antenna structure is implemented with the help of two rectangular-shaped radiator elements that supports three modes HE11δ , HE21δ , and HE12δ at 4.4, 8.3, 10.8 GHz respectively. These fundamental and higher-order modes are supported to wide impedance bandwidth. Inverted T-shaped metallic strip and ground stub to improve the impedance bandwidth 104.6% (3.3–10.8 GHz) with 5.7 dBi peak gain, to enhance the coupling coefficient by stub, scissor-shaped defected ground structure and cross-shaped metallic parasitic strips are used in the existed structure. The MIMO diversity parameters are implemented as simulated ECC ≤ 0.003, DG ≥ 9.98 dB, and CCL ≤ 0.68. All the obtained MIMO antenna parameters are within the acceptable limit for providing high data rate for UWB applications.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Hao Guo ◽  
Behrooz Makki ◽  
Tommy Svensson

Initial access (IA) is identified as a key challenge for the upcoming 5G mobile communication system operating at high carrier frequencies, and several techniques are currently being proposed. In this paper, we extend our previously proposed efficient genetic algorithm- (GA-) based beam refinement scheme to include beamforming at both the transmitter and the receiver and compare the performance with alternative approaches in the millimeter wave multiuser multiple-input-multiple-output (MU-MIMO) networks. Taking the millimeter wave communications characteristics and various metrics into account, we investigate the effect of different parameters such as the number of transmit antennas/users/per-user receive antennas, beamforming resolutions, and hardware impairments on the system performance employing different beam refinement algorithms. As shown, our proposed GA-based approach performs well in delay-constrained networks with multiantenna users. Compared to the considered state-of-the-art schemes, our method reaches the highest service outage-constrained end-to-end throughput with considerably less implementation complexity. Moreover, taking the users’ mobility into account, our GA-based approach can remarkably reduce the beam refinement delay at low/moderate speeds when the spatial correlation is taken into account. Finally, we compare the cases of collaborative users and noncollaborative users and evaluate their difference in system performance.


Sign in / Sign up

Export Citation Format

Share Document