scholarly journals High surface area nano-sized La0.6Ca0.4MnO3 perovskite powder prepared by low temperature pyrolysis of a modified citrate gel

2009 ◽  
Vol 7 (4) ◽  
pp. 809-817 ◽  
Author(s):  
Meysam Soleymani ◽  
Ahmad Moheb ◽  
Ezatolah Joudaki

AbstractSingle phase nanocrystalline La0.6Ca0.4MnO3 powder was synthesized by both the usual and a modified citrate gel precursor method, and the effects on the formation of homogeneous nano-sized powder with a perovskite structure were investigated. In the modified method, single phase La0.6Ca0.4MnO3 powder with an average particle size of 17.2 nm was obtained when the powder was pyrolyzed at 520°C for 2 h. Its specific surface area was 40.7 m2 g−1, about 4-fold larger than that of powder made by the usual citrate gel method.

2012 ◽  
Vol 600 ◽  
pp. 190-193 ◽  
Author(s):  
Wei Wei ◽  
Jing Yi Zhang ◽  
Li Ping Wu ◽  
Guo Tong Qin

The hydrophobic silica granular aerogels were synthesized via sol-gel synthesis followed by ambient pressure drying. The tetraethyloxylane (TEOS) was used as original precursor. The aerogels were analyzed using nitrogen adsorption, scanning electron microscopy (SEM) and laser particle size analyzer. It was found that the aerogel was mesoporous material with high surface area. The aerogels were prepared in grain form by dipping into disperse solution in order to adsorption application. The average particle size of the aerogel was controlled by pH and disperse solution volume. The pH also affected gel time. The aerogels were used to absorb phenol from water. The saturated adsorption amount could reach up to 145 mg•g-1.


2014 ◽  
Vol 34 (2) ◽  
pp. 153-169 ◽  
Author(s):  
S Arabzadeh ◽  
M Ghaedi ◽  
A Ansari ◽  
F Taghizadeh ◽  
M Rajabi

Palladium nanoparticles (Pd-NPs) and nickel oxide nanoparticles (NiO-NPs) were synthesized and loaded on activated carbon (AC). This novel material successfully used for the removal of methylene blue (MB) dye from aqueous medium. Full characterization of both material using X-ray diffraction, transmission electron microscopy, scanning electron microscopy and Brunauer–Emmet–Teller analyses for Pd-NP show their high surface area (>1340 m2/g) and low pore size (<20 Å) and average particle size lower than 45 Å and for NiO-NP show their high surface area (>1316.1554 m2/g) and low pore size (<20 Å) and average particle size lower than 46 Å in addition to high reactive atom and presence of various functional groups. These unique properties make them possible for efficient removal of MB. In batch experimental set-up, optimum conditions for maximum removal of MB by both adsorbents were attained following searching effect of variables such as central composite design. The Langmuir isotherm was found to be highly recommended for fitting the experimental equilibrium data. The kinetic of adsorption of MB on both adsorbents strongly can be fitted by a combination of pseudo-second order and intraparticle diffusion pathway. The experimental result achieved in this article shows the superiority of Pd-NP-AC for MB removal than NiO-NP-AC, so the maximum adsorption capacities of Pd-NP-AC and NiO-NP-AC were 555.5 mg/g and 588.2 mg/g, respectively.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1998 ◽  
Author(s):  
Jason Lin ◽  
Chuanqi Peng ◽  
Sanjana Ravi ◽  
A. K. M. Nur Alam Siddiki ◽  
Jie Zheng ◽  
...  

Biphenyl wrinkled mesoporous silica nanoparticles with controlled particle size and high surface area were evaluated for the storage and delivery of doxorubicin. The average particle size and surface area were ~70 nm and ~1100 m2/g. The doxorubicin loading efficiency was 38.2 ± 1.5 (w/w)% and the release was pH dependent. The breast cancer cell line, MCF-7 (Michigan Cancer Foundation-7) was used for the in vitro drug release study. The cytotoxicity of doxorubicin-loaded nanoparticles was significantly higher than free doxorubicin. Fluorescence images showed biphenyl wrinkled mesoporous silica (BPWS) uptake by the MCF-7 cells. The biphenyl bridged wrinkled silica nanoparticles appear promising for hydrophobic drug loading and delivery.


2008 ◽  
Vol 22 (16) ◽  
pp. 2537-2544 ◽  
Author(s):  
PREETI MATHUR ◽  
ATUL THAKUR ◽  
M. SINGH

In the present work, comparative study of the dielectric behavior of Mn 0.4 Zn 0.6 Fe 2 O 4 ferrite synthesized with and without H 2 O 2 (hydrogen peroxide) has been presented. The dc resistivity has been improved by the citrate precursor method as compared to the ceramic method, and it is further improved by the addition of H 2 O 2, which acts as a strong oxidizing agent. We have shown by means of X-ray diffraction that the resulting ferrite is made up of nanocrystallites and the average size of these nanocrystallites–calculated by Scherrer's formula–depends on the polarizer. The average particle size was found to be ~70 nm with H 2 O 2 and ~88 nm without H 2 O 2. The particle size is further confirmed by scanning electron microscopy. Both the results are found to be in good agreement. The decrease in dielectric constant and dielectric loss factor by addition of oxidizing agent is justified by inverse proportionality between the resistivity and dielectric constant. Possible mechanisms contributing to these processes have been discussed.


2016 ◽  
Vol 7 ◽  
pp. 721-732 ◽  
Author(s):  
Jacek Wojnarowicz ◽  
Roman Mukhovskyi ◽  
Elzbieta Pietrzykowska ◽  
Sylwia Kusnieruk ◽  
Jan Mizeracki ◽  
...  

Mn-doped zinc oxide nanoparticles were prepared by using the microwave solvothermal synthesis (MSS) technique. The nanoparticles were produced from a solution of zinc acetate dihydrate and manganese(II) acetate tetrahydrate using ethylene glycol as solvent. The content of Mn2+ in Zn1− x Mn x O ranged from 1 to 25 mol %. The following properties of the nanostructures were investigated: skeleton density, specific surface area (SSA), phase purity (XRD), lattice parameters, dopant content, average particle size, crystallite size distribution, morphology. The average particle size of Zn1− x Mn x O was determined using Scherrer’s formula, the Nanopowder XRD Processor Demo web application and by converting the specific surface area results. X-ray diffraction of synthesized samples shows a single-phase wurtzite crystal structure of ZnO without any indication of additional phases. Spherical Zn1− x Mn x O particles were obtained with monocrystalline structure and average particle sizes from 17 to 30 nm depending on the content of dopant. SEM images showed an impact of the dopant concentration on the morphology of the nanoparticles.


2010 ◽  
Vol 92 ◽  
pp. 163-169
Author(s):  
Hong Xia Qiao ◽  
Zhi Qiang Wei ◽  
Ming Ru Zhou ◽  
Zhong Mao He

Copper nanoparticles were successfully prepared in large scales by means of anodic arc discharging plasma method in inert atmosphere. The particle size, specific surface area, crystal structure and morphology of the samples were characterized by X-ray diffraction (XRD), BET equation, transmission electron microscopy (TEM) and the corresponding selected area electron diffraction (SAED). The experiment results indicate that the crystal structure of the samples is fcc structure as same as that of the bulk materials. The specific surface area is is 11 m2/g, with the particle size distribution ranging from 30 to 90 nm, the average particle size about 67nm obtained from TEM and confirmed from XRD and BET results. The nanoparticles have uniform size, higher purity, narrow size distribution and spherical shape can be prepared by this convenient and effective method.


2018 ◽  
Vol 50 (1) ◽  
pp. 133-138 ◽  
Author(s):  
Lizina Khatua ◽  
Rudrashish Panda ◽  
Avanendra Singh ◽  
Arpan Nayak ◽  
Pravakar Satapathy ◽  
...  

In this work, the ZnO-TiO2 mixed phase nanoparticles were prepared by solid state reaction method by using ZnO and TiO2 powder as precursors. The X-ray diffraction pattern shows a dominant phase of Zinc Orthotitanate (Zn2TiO4). The average particle size (58?18 nm) calculated by the analysing FESEM data closely matches with the particle size calculated by Scherrer?s equation. The calculated average particle size is significantly smaller than the previously published results of nanoparticles, prepared by same method. In the Brunauer-Emmett-Teller (BET) study the specific surface area of the nanoparticles was found as 8.78 m2/g which is similar to the surface area reported in this material prepared by mechanochemical method. The method which we report is simpler and cost effective unlike the previous reported.


2020 ◽  
Vol 20 (6) ◽  
pp. 3770-3779 ◽  
Author(s):  
Umar Farooq ◽  
Farheen Naz ◽  
Ruby Phul ◽  
Nayeem Ahmad Pandit ◽  
Sapan Kumar Jain ◽  
...  

This paper reports the attempt to develop an efficient heterostructure photocatalyst by employing SrZrO3 as ferroelectric substrate with deposited nanostructured CdS semiconductor on the surface. Primarily bare SrZrO3 and CdS nanoparticles were synthesized by using polymeric citrate precursor and co-precipitation routes, respectively. The chemical deposition technique was used to develop the CdS over the surface of the pre-synthesized SrZrO3 nanoparticles. The synthesized bare nanoparticles and their heterostructure were characterized by XRD which shows the formation of orthorhombic and face centred cubic (FCC) phases of SrZrO3 and CdS, respectively. TEM was used to estimate the morphology and particle size of as-synthesized nanoparticles, which shows the average particle size of 14, 24 and 25 nm for SrZrO3, CdS and SrZrO3/CdS, respectively. The BET surface area of SrZrO3, CdS and SrZrO3/CdS samples was found to be 299, 304 and 312 m2/g respectively. Methylene blue was used as model pollutant to determine the photocatalytic activity of the synthesized nanomaterials. The heterostructure shows an enhanced activity as compared to bare nanoparticles. Dielectric constant and dielectric loss of the nanoparticles was investigated as a function of frequency at room temperature and as a function of temperature at 500 kHz. The room temperature dielectric constant for SrZrO3, CdS and SrZrO3/CdS was found to be 13.2, 17.8 and 25.5 respectively at 100 kHz.


2021 ◽  
Vol 16 ◽  
Author(s):  
Balaji Maddiboyina ◽  
Ramya Krishna Nakkala ◽  
Prasanna Kumar Desu ◽  
Vikas Jhawat

Background: Nanoparticles made of silica are new materials that can be used in a wide range of drug delivery methods because they are biocompatible and biodegradable. Mesalamine, a classic water-soluble medication, remains loaded into the synthesized silica nanoparticle and is considered for sustained release proficiency. Precipitation approach using high surface area and pore volume tetraethyl orthosilicate yielded mesalamine-loaded silica nanoparticles. Methods: The drug-loaded nanoparticle was created and produced using two different techniques. Fourier transform infrared spectrometry, differential scanning calorimetry, X-ray powder diffraction, Brauer Emmett teller, scanning electron microscopy, particle size measurements, and dissolution investigations have all been used to analyse the substance in some way or another. Results: Because of the high surface area, well-known results like the complete silica nanoparticle created using method-2 remained mesoporous. The onset peak of the method-2 formulation's DSC was 182.27°c, and the offset peak was 192.14°c, consistent with the DSC results. The particle size range varies from 205-225nm. The results demonstrate that the uptake of the mesalamine by burst release it for 30 minutes initial, followed by sustained maintenance of dose even after 240 minutes. The results indicate that the loading process has an effect on the extent of loading. When silica nanoparticles were impregnated with mesalamine, the amount of the drug contained was significantly higher than when they were wetted. Conclusion: In addition, the XRD results show that both the pure mesalamine and the formulation did not show any polymorphic deviation.


2009 ◽  
Vol 2009 ◽  
pp. 1-5 ◽  
Author(s):  
Hongxia Qiao ◽  
Zhiqiang Wei ◽  
Hua Yang ◽  
Lin Zhu ◽  
Xiaoyan Yan

NiO nanoparticles with average particle size of 25 nm were successfully prepared by anodic arc plasma method. The composition, morphology, crystal microstructure, specific surface area, infrared spectra, and particle size distribution of product were analyzed by using X-ray diffraction (XRD), transmission electron microscopy (TEM) and the corresponding selected area electron diffraction (SAED), Fourier transform infrared (FTIR) spectrum, and Brunauer-Emmett-Teller (BET)N2adsorption. The experiment results show that the NiO nanoparticles are bcc structure with spherical shape and well dispersed, the particle size distribution ranging from 15 to 45 nm with the average particle size is about 25 nm, and the specific surface area is 33 m2/g. The infrared absorption band of NiO nanoparticles shows blue shifts compared with that of bulk NiO.


Sign in / Sign up

Export Citation Format

Share Document