scholarly journals Some class of analytic functions related to conic domains

2014 ◽  
Vol 64 (5) ◽  
Author(s):  
Stanisława Kanas ◽  
Dorina Răducanu

AbstractFor q ∈ (0, 1) let the q-difference operator be defined as follows $$\partial _q f(z) = \frac{{f(qz) - f(z)}} {{z(q - 1)}} (z \in \mathbb{U}),$$ where $$\mathbb{U}$$ denotes the open unit disk in a complex plane. Making use of the above operator the extended Ruscheweyh differential operator R qλ f is defined. Applying R qλ f a subfamily of analytic functions is defined. Several interesting properties of a defined family of functions are investigated.

2020 ◽  
Vol 28 (1) ◽  
pp. 105-114
Author(s):  
Rabha W. Ibrahim

AbstractInequality study is a magnificent field for investigating the geometric behaviors of analytic functions in the open unit disk calling the subordination and superordination. In this work, we aim to formulate a generalized differential-difference operator. We introduce a new class of analytic functions having the generalized operator. Some subordination results are included in the sequel.


Author(s):  
Abbas Kareem Wanas ◽  
Hala Abbas Mehdi

In this paper, by making use of the principle of strong subordination, we establish some interesting properties of multivalent analytic functions defined in the open unit disk and closed unit disk of the complex plane associated with Dziok-Srivastava operator.


2016 ◽  
Vol 103 (1) ◽  
pp. 104-115 ◽  
Author(s):  
THOMAS H. MACGREGOR ◽  
MICHAEL P. STERNER

Suppose that the function $f$ is analytic in the open unit disk $\unicode[STIX]{x1D6E5}$ in the complex plane. For each $\unicode[STIX]{x1D6FC}>0$ a function $f^{[\unicode[STIX]{x1D6FC}]}$ is defined as the Hadamard product of $f$ with a certain power function. The function $f^{[\unicode[STIX]{x1D6FC}]}$ compares with the fractional derivative of $f$ of order $\unicode[STIX]{x1D6FC}$. Suppose that $f^{[\unicode[STIX]{x1D6FC}]}$ has a limit at some point $z_{0}$ on the boundary of $\unicode[STIX]{x1D6E5}$. Then $w_{0}=\lim _{z\rightarrow z_{0}}f(z)$ exists. Suppose that $\unicode[STIX]{x1D6F7}$ is analytic in $f(\unicode[STIX]{x1D6E5})$ and at $w_{0}$. We show that if $g=\unicode[STIX]{x1D6F7}(f)$ then $g^{[\unicode[STIX]{x1D6FC}]}$ has a limit at $z_{0}$.


2021 ◽  
Vol 25 (Spec. issue 2) ◽  
pp. 173-178
Author(s):  
Rabha Ibrahim ◽  
Mayada Wazi ◽  
Dumitru Baleanu ◽  
Nadia Al-Saidi

In this effort, we propose a new fractional differential operator in the open unit disk. The operator is an extension of the Atangana-Baleanu differential operator without singular kernel. We suggest it for a normalized class of analytic functions in the open unit disk. By employing the extended operator, we study the time-2-D space heat equation and optimizing its solution by a chaotic function.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Samir B. Hadid ◽  
Rabha W. Ibrahim ◽  
G. Murugusundaramoorthy

Newly, numerous investigations are considered utilizing the idea of parametric operators (integral and differential). The objective of this effort is to formulate a new 2D-parameter differential operator (PDO) of a class of multivalent functions in the open unit disk. Consequently, we formulate the suggested operator in some interesting classes of analytic functions to study its geometric properties. The recognized class contains some recent works.


2019 ◽  
Vol 100 (3) ◽  
pp. 458-469
Author(s):  
GANGQIANG CHEN

Assume a point $z$ lies in the open unit disk $\mathbb{D}$ of the complex plane $\mathbb{C}$ and $f$ is an analytic self-map of $\mathbb{D}$ fixing 0. Then Schwarz’s lemma gives $|f(z)|\leq |z|$, and Dieudonné’s lemma asserts that $|f^{\prime }(z)|\leq \min \{1,(1+|z|^{2})/(4|z|(1-|z|^{2}))\}$. We prove a sharp upper bound for $|f^{\prime \prime }(z)|$ depending only on $|z|$.


2021 ◽  
Vol 45 (01) ◽  
pp. 7-20
Author(s):  
ABBAS KAREEM WANAS ◽  
ALB LUPAŞ ALINA

The purpose of this paper is to derive subordination and superordination results involving differential operator for multivalent analytic functions in the open unit disk. These results are applied to obtain sandwich results. Our results extend corresponding previously known results.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 363 ◽  
Author(s):  
Rabha W. Ibrahim ◽  
Rafida M. Elobaid ◽  
Suzan J. Obaiys

It is well known that the conformable and the symmetric differential operators have formulas in terms of the first derivative. In this document, we combine the two definitions to get the symmetric conformable derivative operator (SCDO). The purpose of this effort is to provide a study of SCDO connected with the geometric function theory. These differential operators indicate a generalization of well known differential operator including the Sàlàgean differential operator. Our contribution is to impose two classes of symmetric differential operators in the open unit disk and to describe the further development of these operators by introducing convex linear symmetric operators. In addition, by acting these SCDOs on the class of univalent functions, we display a set of sub-classes of analytic functions having geometric representation, such as starlikeness and convexity properties. Investigations in this direction lead to some applications in the univalent function theory of well known formulas, by defining and studying some sub-classes of analytic functions type Janowski function and convolution structures. Moreover, by using the SCDO, we introduce a generalized class of Briot–Bouquet differential equations to introduce, what is called the symmetric conformable Briot–Bouquet differential equations. We shall show that the upper bound of this class is symmetric in the open unit disk.


2017 ◽  
Vol 9 (1) ◽  
pp. 122-139 ◽  
Author(s):  
Imran Faisal ◽  
Maslina Darus

AbstractBy making use of new linear fractional differential operator, we introduce and study certain subclasses of analytic functions associated with Symmetric Conjugate Points and defined in the open unit disk 𝕌 = {z : |z| < 1}. Inclusion relationships are established and convolution properties of functions in these subclasses are discussed.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2361
Author(s):  
Loriana Andrei ◽  
Vasile-Aurel Caus

The goal of the present investigation is to introduce a new class of analytic functions (Kt,q), defined in the open unit disk, by means of the q-difference operator, which may have symmetric or assymetric properties, and to establish the relationship between the new defined class and appropriate subordination. We derived relationships of this class and obtained sufficient conditions for an analytic function to be Kt,q. Finally, in the concluding section, we have taken the decision to restate the clearly-proved fact that any attempt to create the rather simple (p,q)-variations of the results, which we have provided in this paper, will be a rather inconsequential and trivial work, simply because the added parameter p is obviously redundant.


Sign in / Sign up

Export Citation Format

Share Document