scholarly journals In-Service Flaw Detection and Quantification in the Composite Structures of Aircraft

2009 ◽  
Vol 2009 (1) ◽  
pp. 37-41 ◽  
Author(s):  
Krzysztof Dragan ◽  
Piotr Synaszko

In-Service Flaw Detection and Quantification in the Composite Structures of Aircraft Taking into consideration the increased usage of composites for aircraft structures there is a necessity for gathering information about structural integrity of such components. During the manufacturing of composites as well as during in service and maintenance procedures there is a possibility for damage occurrence. There is a large number of failure modes which can happen in such structures. These failure modes affect structural integrity and durability. In this work modern approach for detection of composites damage detection such as: delaminations, disbonds, foreign object inclusion and core damage has been presented. This detection is possible with the use of advanced P-C aided Non Destructive Testing methods. In the article nondestructive testing results for the composite vertical tail skins on MiG-29 aircraft will be delivered as well as some results of F-16 horizontal stabilizer and W-3 helicopter main rotor blades. Moreover some results of the composite honeycomb and sandwich structures will be presented based on the materials used in the construction of gliders and small aircraft. Factors affecting structural integrity and durability of the composites will be highlighted as well as necessity of the inspection with the use of modern NDT techniques. At the end some effort with Structural Health Monitoring connected with possibility of condition monitoring of composites will be presented.

2014 ◽  
Vol 891-892 ◽  
pp. 1597-1602 ◽  
Author(s):  
Nabil Chowdhury ◽  
Wing Kong Chiu ◽  
John Wang

A review of some of the various fatigue models introduced over the years for both metallic materials, in particular aluminium alloys followed by fatigue and durability concerns associated with composite materials. The move towards light weight and high stiffness structures that have good fatigue durability and corrosion resistance has led to the rapid move from metal structures to composite structures. With this brings the added concern of certifying new components as the damage mechanisms and failure modes in metals differ significantly than composite materials such as carbon fiber reinforced polymers (CFRP). The certification philosophy for composites must meet the same structural integrity, safety and durability requirements as that of metals. Hence this is where the challenge now lies. Substantial work has been conducted in the reparability of composite structures through bonding using various adherend thicknesses and joint types and has been shown to have higher durability than mechanically fastened repairs for thin adherends however these are currently unacceptable repair methods as they cannot be certified. Repairs are designed on the basis that the repair efficiency can be predicted and should be designed conservatively with respect to the various failure modes and include the surrounding structure.


Micromachines ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 621 ◽  
Author(s):  
Wongi S. Na ◽  
Jongdae Baek

Detecting the depth and size of debonding in composite structures is essential for assessing structural safety as it can weaken the structure possibly leading to a failure. As composite materials are used in various fields up to date including aircrafts and bridges, inspections are carried out to maintain structural integrity. Although many inspection methods exist for detection damage of composites, most of the techniques require trained experts or a large equipment that can be time consuming. In this study, the possibility of using the piezoelectric material-based non-destructive method known as the electromechanical impedance (EMI) technique is used to identify the depth of debonding damage of glass epoxy laminates. Laminates with various thicknesses were prepared and tested to seek for the possibility of using the EMI technique for identifying the depth of debonding. Results show promising outcome for bringing the EMI technique a step closer for commercialization.


Author(s):  
Bilal M. Ayyub ◽  
Karl A. Stambaugh ◽  
Timothy A. McAllister ◽  
Gilberto F. de Souza ◽  
David Webb

This paper provides a methodology for the structural reliability analysis of marine vessels based on failure modes of their hull girders, stiffened panels including buckling, fatigue, and fracture and corresponding life predictions at the component and system levels. Factors affecting structural integrity such as operational environment and structural response entail uncertainties requiring the use of probabilistic methods to estimate reliabilities associated with various alternatives being considered for design, maintenance, and repair. Variability of corrosion experienced on marine vessels is a specific example of factors affecting structural integrity requiring probabilistic methods. The Structural Life Assessment of Ship Hulls (SLASH) methodology developed in this paper produces time-dependent reliability functions for hull girders, stiffened panels, fatigue details, and fracture at the component and system levels. The methodology was implemented as a web-enabled, cloud-computing-based tool with a database for managing vessels analyzed with associated stations, components, details, and results, and users. Innovative numerical and simulation methods were developed for reliability predictions with the use of conditional expectation. Examples are provided to illustrate the computations.


2011 ◽  
Vol 130-134 ◽  
pp. 2421-2424
Author(s):  
Guo Qiang Cao ◽  
Lan Yao ◽  
Yi Tong Dai

Ultrasonic flaw detection in weld inspection is commonly used in non-destructive testing methods. But when the ultrasonic inspection of the welds, point location of defects and identify need technical personnel calculation and according to their long-term practical experience, it requirement for inspection personnel has higher technology.And in ultrasonic weld inspection there will be some factors affecting the accuracy of positioning. It will lead to limitations of ultrasonic weld inspection. To solve these problems effectively, AutoCAD will be used in ultrasonic weld inspection.


2020 ◽  
Vol 2020 (1) ◽  
pp. 34-52
Author(s):  
Rafał Szymański

AbstractThe article is in line with the contemporary interests of companies from the aviation industry. It describes thermoplastic material and inspection techniques used in leading aviation companies. The subject matter of non-destructive testing currently used in aircraft inspections of composite structures is approximated and each of the methods used is briefly described. The characteristics of carbon preimpregnates in thermoplastic matrix are also presented, as well as types of thermoplastic materials and examples of their application in surface ship construction. The advantages, disadvantages and limitations for these materials are listed. The focus was put on the explanation of the ultrasonic method, which is the most commonly used method during the inspection of composite structures at the production and exploitation stage. Describing the ultrasonic method, the focus was put on echo pulse technique and the use of modern Phased Array heads. Incompatibilities most frequently occurring and detected in composite materials with thermosetting and thermoplastic matrix were listed and described. A thermoplastic flat composite panel made of carbon pre-impregnate in a high-temperature matrix (over 300°C), which was the subject of the study, was described. The results of non-destructive testing (ultrasonic method) of thermoplastic panel were presented and conclusions were drawn.


2020 ◽  
Vol 995 ◽  
pp. 209-213
Author(s):  
Young W. Kwon

Failure analyses of laminated fibrous composite structures were conducted using the failure criteria based on a multiscale approach. The failure criteria used the stresses and strains in the fiber and matrix materials, respectively, rather than those smeared values at the lamina level. The failure modes and their respective failure criteria consist of fiber failure, matrix failure and their interface failure explicitly. In order to determine the stresses and strains at the constituent material level (i.e. fiber and matrix materials), analytical expressions were derived using a unit-cell model. This model was used for the multiscale approach for both upscaling and downscaling processes. The failure criteria are applicable to both quasi-static loading as well as dynamic loading with strain rate effects.


Author(s):  
Ramesh Talreja

Structural integrity of composite materials is governed by failure mechanisms that initiate at the scale of the microstructure. The local stress fields evolve with the progression of the failure mechanisms. Within the full span from initiation to criticality of the failure mechanisms, the governing length scales in a fibre-reinforced composite change from the fibre size to the characteristic fibre-architecture sizes, and eventually to a structural size, depending on the composite configuration and structural geometry as well as the imposed loading environment. Thus, a physical modelling of failure in composites must necessarily be of multi-scale nature, although not always with the same hierarchy for each failure mode. With this background, the paper examines the currently available main composite failure theories to assess their ability to capture the essential features of failure. A case is made for an alternative in the form of physical modelling and its skeleton is constructed based on physical observations and systematic analysis of the basic failure modes and associated stress fields and energy balances. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’.


2005 ◽  
Vol 128 (1) ◽  
pp. 41-49
Author(s):  
Edward M. Wu ◽  
John L. Kardos

This paper focuses on the probability modeling of fiber composite strength, wherein the failure modes are dominated by fiber tensile failures. The probability model is the tri-modal local load-sharing model, which is the Phoenix-Harlow local load-sharing model with the filament failure model extended from one mode to three modes. This model results in increased efficiency in the determination of fiber statistical parameters and in lower cost when applied to (i) quality control in materials (fiber) manufacturing, (ii) materials (fiber) selection and comparison, (iii) accounting for the effect of size scaling in design, and (iv) qualification and certification of critical composite structures that are too large and expensive to test statistically. In addition, possible extensions to proof testing and time-dependent life prediction are discussed and preliminary data are presented.


2021 ◽  
Vol 5 (1) ◽  
pp. 32
Author(s):  
Roya Akrami ◽  
Shahwaiz Anjum ◽  
Sakineh Fotouhi ◽  
Joel Boaretto ◽  
Felipe Vannucchi de Camargo ◽  
...  

Joints and interfaces are one of the key aspects of the design and production of composite structures. This paper investigates the effect of adhesive–adherend interface morphology on the mechanical behavior of wavy-lap joints with the aim to improve the mechanical performance. Intentional deviation from a flat joint plane was introduced in different bond angles (0°, 60°, 90° and 120°) and the joints were subjected to a quasi-static tensile load. Comparisons were made regarding the mechanical behavior of the conventional flat joint and the wavy joints. The visible failure modes that occurred within each of the joint configurations was also highlighted and explained. Load vs. displacement graphs were produced and compared, as well as the failure modes discussed both visually and qualitatively. It was observed that distinct interface morphologies result in variation in the load–displacement curve and damage types. The wavy-lap joints experience a considerably higher displacement due to the additional bending in the joint area, and the initial damage starts occurring at a higher displacement. However, the load level had its maximum value for the single-lap joints. Our findings provide insight for the development of different interface morphology angle variation to optimize the joints behavior, which is widely observed in some biological systems to improve their performance.


Sign in / Sign up

Export Citation Format

Share Document