scholarly journals A Reinforced Topic-Aware Convolutional Sequence-to-Sequence Model for Abstractive Text Summarization

Author(s):  
Li Wang ◽  
Junlin Yao ◽  
Yunzhe Tao ◽  
Li Zhong ◽  
Wei Liu ◽  
...  

In this paper, we propose a deep learning approach to tackle the automatic summarization tasks by incorporating topic information into the convolutional sequence-to-sequence (ConvS2S) model and using self-critical sequence training (SCST) for optimization. Through jointly attending to topics and word-level alignment, our approach can improve coherence, diversity, and informativeness of generated summaries via a biased probability generation mechanism. On the other hand, reinforcement training, like SCST, directly optimizes the proposed model with respect to the non-differentiable metric ROUGE, which also avoids the exposure bias during inference. We carry out the experimental evaluation with state-of-the-art methods over the Gigaword, DUC-2004, and LCSTS datasets. The empirical results demonstrate the superiority of our proposed method in the abstractive summarization.

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7696
Author(s):  
Umair Yousaf ◽  
Ahmad Khan ◽  
Hazrat Ali ◽  
Fiaz Gul Khan ◽  
Zia ur Rehman ◽  
...  

License plate localization is the process of finding the license plate area and drawing a bounding box around it, while recognition is the process of identifying the text within the bounding box. The current state-of-the-art license plate localization and recognition approaches require license plates of standard size, style, fonts, and colors. Unfortunately, in Pakistan, license plates are non-standard and vary in terms of the characteristics mentioned above. This paper presents a deep-learning-based approach to localize and recognize Pakistani license plates with non-uniform and non-standardized sizes, fonts, and styles. We developed a new Pakistani license plate dataset (PLPD) to train and evaluate the proposed model. We conducted extensive experiments to compare the accuracy of the proposed approach with existing techniques. The results show that the proposed method outperformed the other methods to localize and recognize non-standard license plates.


Author(s):  
Tham Vo

Recently, advanced techniques in deep learning such as recurrent neural network (GRU, LSTM and Bi-LSTM) and auto-encoding (attention-based transformer and BERT) have achieved great successes in multiple application domains including text summarization. Recent state-of-the-art encoding-based text summarization models such as BertSum, PreSum and DiscoBert have demonstrated significant improvements on extractive text summarization tasks. However, recent models still encounter common problems related to the language-specific dependency which requires the supports of the external NLP tools. Besides that, recent advanced text representation methods, such as BERT as the sentence-level textual encoder, also fail to fully capture the representation of a full-length document. To address these challenges, in this paper we proposed a novel s emantic-ware e mbedding approach for ex tractive text sum marization , called as: SE4ExSum. Our proposed SE4ExSum is an integration between the use of feature graph-of-words (FGOW) with BERT-based encoder for effectively learning the word/sentence-level representations of a given document. Then, the g raph c onvolutional n etwork (GCN) based encoder is applied to learn the global document's representation which is then used to facilitate the text summarization task. Extensive experiments on benchmark datasets show the effectiveness of our proposed model in comparing with recent state-of-the-art text summarization models.


2019 ◽  
Vol 9 (22) ◽  
pp. 4963 ◽  
Author(s):  
Samee Ullah Khan ◽  
Ijaz Ul Haq ◽  
Seungmin Rho ◽  
Sung Wook Baik ◽  
Mi Young Lee

Movies have become one of the major sources of entertainment in the current era, which are based on diverse ideas. Action movies have received the most attention in last few years, which contain violent scenes, because it is one of the undesirable features for some individuals that is used to create charm and fantasy. However, these violent scenes have had a negative impact on kids, and they are not comfortable even for mature age people. The best way to stop under aged people from watching violent scenes in movies is to eliminate these scenes. In this paper, we proposed a violence detection scheme for movies that is comprised of three steps. First, the entire movie is segmented into shots, and then a representative frame from each shot is selected based on the level of saliency. Next, these selected frames are passed from a light-weight deep learning model, which is fine-tuned using a transfer learning approach to classify violence and non-violence shots in a movie. Finally, all the non-violence scenes are merged in a sequence to generate a violence-free movie that can be watched by children and as well violence paranoid people. The proposed model is evaluated on three violence benchmark datasets, and it is experimentally proved that the proposed scheme provides a fast and accurate detection of violent scenes in movies compared to the state-of-the-art methods.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1962
Author(s):  
Enrico Buratto ◽  
Adriano Simonetto ◽  
Gianluca Agresti ◽  
Henrik Schäfer ◽  
Pietro Zanuttigh

In this work, we propose a novel approach for correcting multi-path interference (MPI) in Time-of-Flight (ToF) cameras by estimating the direct and global components of the incoming light. MPI is an error source linked to the multiple reflections of light inside a scene; each sensor pixel receives information coming from different light paths which generally leads to an overestimation of the depth. We introduce a novel deep learning approach, which estimates the structure of the time-dependent scene impulse response and from it recovers a depth image with a reduced amount of MPI. The model consists of two main blocks: a predictive model that learns a compact encoded representation of the backscattering vector from the noisy input data and a fixed backscattering model which translates the encoded representation into the high dimensional light response. Experimental results on real data show the effectiveness of the proposed approach, which reaches state-of-the-art performances.


2021 ◽  
Vol 18 (4) ◽  
pp. 1-22
Author(s):  
Jerzy Proficz

Two novel algorithms for the all-gather operation resilient to imbalanced process arrival patterns (PATs) are presented. The first one, Background Disseminated Ring (BDR), is based on the regular parallel ring algorithm often supplied in MPI implementations and exploits an auxiliary background thread for early data exchange from faster processes to accelerate the performed all-gather operation. The other algorithm, Background Sorted Linear synchronized tree with Broadcast (BSLB), is built upon the already existing PAP-aware gather algorithm, that is, Background Sorted Linear Synchronized tree (BSLS), followed by a regular broadcast distributing gathered data to all participating processes. The background of the imbalanced PAP subject is described, along with the PAP monitoring and evaluation topics. An experimental evaluation of the algorithms based on a proposed mini-benchmark is presented. The mini-benchmark was performed over 2,000 times in a typical HPC cluster architecture with homogeneous compute nodes. The obtained results are analyzed according to different PATs, data sizes, and process numbers, showing that the proposed optimization works well for various configurations, is scalable, and can significantly reduce the all-gather elapsed times, in our case, up to factor 1.9 or 47% in comparison with the best state-of-the-art solution.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Molham Al-Maleh ◽  
Said Desouki

An amendment to this paper has been published and can be accessed via the original article.


Author(s):  
S. Arokiaraj ◽  
Dr. N. Viswanathan

With the advent of Internet of things(IoT),HA (HA) recognition has contributed the more application in health care in terms of diagnosis and Clinical process. These devices must be aware of human movements to provide better aid in the clinical applications as well as user’s daily activity.Also , In addition to machine and deep learning algorithms, HA recognition systems has significantly improved in terms of high accurate recognition. However, the most of the existing models designed needs improvisation in terms of accuracy and computational overhead. In this research paper, we proposed a BAT optimized Long Short term Memory (BAT-LSTM) for an effective recognition of human activities using real time IoT systems. The data are collected by implanting the Internet of things) devices invasively. Then, proposed BAT-LSTM is deployed to extract the temporal features which are then used for classification to HA. Nearly 10,0000 dataset were collected and used for evaluating the proposed model. For the validation of proposed framework, accuracy, precision, recall, specificity and F1-score parameters are chosen and comparison is done with the other state-of-art deep learning models. The finding shows the proposed model outperforms the other learning models and finds its suitability for the HA recognition.


2020 ◽  
Vol 17 (3) ◽  
pp. 849-865
Author(s):  
Zhongqin Bi ◽  
Shuming Dou ◽  
Zhe Liu ◽  
Yongbin Li

Neural network methods have been trained to satisfactorily learn user/product representations from textual reviews. A representation can be considered as a multiaspect attention weight vector. However, in several existing methods, it is assumed that the user representation remains unchanged even when the user interacts with products having diverse characteristics, which leads to inaccurate recommendations. To overcome this limitation, this paper proposes a novel model to capture the varying attention of a user for different products by using a multilayer attention framework. First, two individual hierarchical attention networks are used to encode the users and products to learn the user preferences and product characteristics from review texts. Then, we design an attention network to reflect the adaptive change in the user preferences for each aspect of the targeted product in terms of the rating and review. The results of experiments performed on three public datasets demonstrate that the proposed model notably outperforms the other state-of-the-art baselines, thereby validating the effectiveness of the proposed approach.


2020 ◽  
Vol 34 (07) ◽  
pp. 11029-11036
Author(s):  
Jiabo Huang ◽  
Qi Dong ◽  
Shaogang Gong ◽  
Xiatian Zhu

Convolutional neural networks (CNNs) have achieved unprecedented success in a variety of computer vision tasks. However, they usually rely on supervised model learning with the need for massive labelled training data, limiting dramatically their usability and deployability in real-world scenarios without any labelling budget. In this work, we introduce a general-purpose unsupervised deep learning approach to deriving discriminative feature representations. It is based on self-discovering semantically consistent groups of unlabelled training samples with the same class concepts through a progressive affinity diffusion process. Extensive experiments on object image classification and clustering show the performance superiority of the proposed method over the state-of-the-art unsupervised learning models using six common image recognition benchmarks including MNIST, SVHN, STL10, CIFAR10, CIFAR100 and ImageNet.


2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Puhong Duan ◽  
Pedram Ghamisi ◽  
Filip Ferdinand ◽  
...  

Abstract This paper provides the state of the art of data science in economics. Through a novel taxonomy of applications and methods advances in data science are investigated. The data science advances are investigated in three individual classes of deep learning models, ensemble models, and hybrid models. Application domains include stock market, marketing, E-commerce, corporate banking, and cryptocurrency. Prisma method, a systematic literature review methodology is used to ensure the quality of the survey. The findings revealed that the trends are on advancement of hybrid models as more than 51% of the reviewed articles applied hybrid model. On the other hand, it is found that based on the RMSE accuracy metric, hybrid models had higher prediction accuracy than other algorithms. While it is expected the trends go toward the advancements of deep learning models.


Sign in / Sign up

Export Citation Format

Share Document